Question

If $${a_r} > 0,r \in N$$   and $${a_1},{a_2},{a_3},.....,{a_{2n}}$$    are in A.P. then $$\frac{{{a_1} + {a_{2n}}}}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \frac{{{a_2} + {a_{2n - 1}}}}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + \frac{{{a_3} + {a_{2n - 2}}}}{{\sqrt {{a_3}} + \sqrt {{a_4}} }} + ..... + \frac{{{a_n} + {a_{n + 1}}}}{{\sqrt {{a_n}} + \sqrt {{a_{n + 1}}} }}$$             is equal to

A. $$n - 1$$
B. $$\frac{{n\left( {{a_1} + {a_{2n}}} \right)}}{{\sqrt {{a_1}} + \sqrt {{a_{n + 1}}} }}$$  
C. $$\frac{{n - 1}}{{\sqrt {{a_1}} + \sqrt {{a_{n + 1}}} }}$$
D. none of these
Answer :   $$\frac{{n\left( {{a_1} + {a_{2n}}} \right)}}{{\sqrt {{a_1}} + \sqrt {{a_{n + 1}}} }}$$
Solution :
$${a_1} + {a_{2n}} = {a_2} + {a_{2n - 1}} = ..... = {a_n} + {a_{n + 1}} = k\left( {{\text{say}}} \right).$$
Expression $$ = k\left\{ {\frac{{\sqrt {{a_1}} - \sqrt {{a_2}} }}{{{a_1} - {a_2}}} + ..... + \frac{{\sqrt {{a_n}} - \sqrt {{a_{n + 1}}} }}{{{a_n} - {a_{n + 1}}}}} \right\} = \frac{k}{{ - d}}\left( {\sqrt {{a_1}} - \sqrt {{a_{n + 1}}} } \right),$$
where $$d$$ = common difference
$$ = \frac{k}{{ - d}}\frac{{{a_1} - {a_{n + 1}}}}{{\sqrt {{a_1}} + \sqrt {{a_{n + 1}}} }} = \left( {{a_1} + {a_{2n}}} \right).\frac{{ - nd}}{{ - d\left( {\sqrt {{a_1}} + \sqrt {{a_{n + 1}}} } \right)}}.$$

Releted MCQ Question on
Algebra >> Sequences and Series

Releted Question 1

If $$x, y$$ and $$z$$ are $${p^{{\text{th}}}},{q^{{\text{th}}}}\,{\text{and }}{r^{{\text{th}}}}$$   terms respectively of an A.P. and also of a G.P., then $${x^{y - z}}{y^{z - x}}{z^{x - y}}$$   is equal to:

A. $$xyz$$
B. 0
C. 1
D. None of these
Releted Question 2

The third term of a geometric progression is 4. The product of the first five terms is

A. $${4^3}$$
B. $${4^5}$$
C. $${4^4}$$
D. none of these
Releted Question 3

The rational number, which equals the number $$2.\overline {357} $$   with recurring decimal is

A. $$\frac{{2355}}{{1001}}$$
B. $$\frac{{2379}}{{997}}$$
C. $$\frac{{2355}}{{999}}$$
D. none of these
Releted Question 4

If $$a, b, c$$  are in G.P., then the equations $$a{x^2} + 2bx + c = 0$$     and $$d{x^2} + 2ex + f = 0$$     have a common root if $$\frac{d}{a},\frac{e}{b},\frac{f}{c}$$   are in-

A. A.P.
B. G.P.
C. H.P.
D. none of these

Practice More Releted MCQ Question on
Sequences and Series


Practice More MCQ Question on Maths Section