Question

If $${a_n} = \sum\limits_{r = 0}^n {\frac{1}{{^n{C_r}}}} $$   then $$\sum\limits_{r = 0}^n {\frac{r}{{^n{C_r}}}} $$  equals

A. $$\left( {n - 1} \right){a_n}$$
B. $$n{a_n}$$
C. $$\frac{1}{2}n{a_n}$$  
D. None of these
Answer :   $$\frac{1}{2}n{a_n}$$
Solution :
Take $$n = 2m.$$  Then
$$\eqalign{ & {a_n} = \frac{1}{{^{2m}{C_0}}} + \frac{1}{{^{2m}{C_1}}} + ..... + \frac{1}{{^{2m}{C_{2m}}}} \cr & {a_n} = 2\left( {\frac{1}{{^{2m}{C_0}}} + \frac{1}{{^{2m}{C_1}}} + ..... + \frac{1}{{^{2m}{C_{m - 1}}}}} \right) + \frac{1}{{^{2m}{C_m}}}\,\,\,\,.....\left( 1 \right) \cr & \sum\limits_{r = 0}^n {\frac{r}{{^n{C_r}}}} = \sum\limits_{r = 0}^{2m} {\frac{r}{{^{2m}{C_r}}} = \frac{1}{{^{2m}{C_1}}} + \frac{2}{{^{2m}{C_2}}} + ..... + \frac{{2m}}{{^{2m}{C_{2m}}}}} \cr & \sum\limits_{r = 0}^n {\frac{r}{{^n{C_r}}}} = \left( {\frac{1}{{^{2m}{C_1}}} + \frac{{2m - 1}}{{^{2m}{C_{2m - 1}}}}} \right) + \left( {\frac{2}{{^{2m}{C_2}}} + \frac{{2m - 2}}{{^{2m}{C_{2m - 2}}}}} \right) + ..... + \left( {\frac{{m - 1}}{{^{2m}{C_{m - 1}}}} + \frac{{m + 1}}{{^{2m}{C_{m + 1}}}}} \right) + \frac{m}{{^{2m}{C_m}}} + \frac{{2m}}{{^{2m}{C_{2m}}}} \cr & \sum\limits_{r = 0}^n {\frac{r}{{^n{C_r}}}} = 2m\left\{ {\frac{1}{{^{2m}{C_1}}} + \frac{1}{{^{2m}{C_2}}} + ..... + \frac{1}{{^{2m}{C_{m - 1}}}}} \right\} + \frac{m}{{^{2m}{C_m}}} + 2m \cr & \sum\limits_{r = 0}^n {\frac{r}{{^n{C_r}}}} = 2m\left\{ {\frac{1}{{^{2m}{C_0}}} + \frac{1}{{^{2m}{C_1}}} + \frac{1}{{^{2m}{C_2}}} + ..... + \frac{1}{{^{2m}{C_{m - 1}}}}} \right\} + \frac{m}{{^{2m}{C_m}}} \cr & \sum\limits_{r = 0}^n {\frac{r}{{^n{C_r}}}} = m\left( {{a_n} - \frac{1}{{^{2m}{C_m}}}} \right) + \frac{m}{{^{2m}{C_m}}} = m{a_n} = \frac{n}{2}{a_n}. \cr} $$
Similarly for $$n = 2m + 1.$$

Releted MCQ Question on
Algebra >> Binomial Theorem

Releted Question 1

Given positive integers $$r > 1, n > 2$$   and that the co - efficient of $${\left( {3r} \right)^{th}}\,{\text{and }}{\left( {r + 2} \right)^{th}}$$    terms in the binomial expansion of $${\left( {1 + x} \right)^{2n}}$$  are equal. Then

A. $$n = 2r$$
B. $$n = 2r + 1$$
C. $$n = 3r$$
D. none of these
Releted Question 2

The co-efficient of $${x^4}$$ in $${\left( {\frac{x}{2} - \frac{3}{{{x^2}}}} \right)^{10}}$$   is

A. $$\frac{{405}}{{256}}$$
B. $$\frac{{504}}{{259}}$$
C. $$\frac{{450}}{{263}}$$
D. none of these
Releted Question 3

The expression $${\left( {x + {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5} + {\left( {x - {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5}$$       is a polynomial of degree

A. 5
B. 6
C. 7
D. 8
Releted Question 4

If in the expansion of $${\left( {1 + x} \right)^m}{\left( {1 - x} \right)^n},$$    the co-efficients of $$x$$ and $${x^2}$$ are $$3$$ and $$- 6\,$$ respectively, then $$m$$ is

A. 6
B. 9
C. 12
D. 24

Practice More Releted MCQ Question on
Binomial Theorem


Practice More MCQ Question on Maths Section