Question

If an equation of a tangent to the curve, $$y = \cos \left( {x + y} \right),\, - 1 \leqslant x \leqslant 1 + \pi ,$$       is $$x + 2y = k$$   then $$k$$ is equal to :

A. $$1$$
B. $$2$$
C. $$\frac{\pi }{4}$$
D. $$\frac{\pi }{2}$$  
Answer :   $$\frac{\pi }{2}$$
Solution :
Let $$y = \cos \left( {x + y} \right)$$
$$ \Rightarrow \frac{{dy}}{{dx}} = - \sin \left( {x + y} \right)\left( {1 + \frac{{dy}}{{dx}}} \right)......\left( 1 \right)$$
Now, given equation of tangent is $$x + 2y = k$$
$$\eqalign{ & \Rightarrow {\text{Slope}} = \frac{{ - 1}}{2} \cr & {\text{So, }}\frac{{dy}}{{dx}} = \frac{{ - 1}}{2}\,{\text{put this value in equation}}\left( 1 \right),{\text{ we get}} \cr & \frac{{ - 1}}{2} = - \sin \left( {x + y} \right)\left( {1 - \frac{1}{2}} \right) \cr & \Rightarrow \sin \left( {x + y} \right) = 1 \cr & \Rightarrow x + y = \frac{\pi }{2} \cr & \Rightarrow y = \frac{\pi }{2} - x \cr & {\text{Now, }}\frac{\pi }{2} - x = \cos \left( {x + y} \right) \cr & \Rightarrow x = \frac{\pi }{2}{\text{ and }}y = 0 \cr & {\text{Thus }}x + 2y = k \Rightarrow \frac{\pi }{2} = k \cr} $$

Releted MCQ Question on
Calculus >> Application of Derivatives

Releted Question 1

If  $$a + b + c = 0,$$    then the quadratic equation $$3a{x^2}+ 2bx + c = 0$$     has

A. at least one root in $$\left[ {0, 1} \right]$$
B. one root in $$\left[ {2, 3} \right]$$  and the other in $$\left[ { - 2, - 1} \right]$$
C. imaginary roots
D. none of these
Releted Question 2

$$AB$$  is a diameter of a circle and $$C$$ is any point on the circumference of the circle. Then

A. the area of $$\Delta ABC$$  is maximum when it is isosceles
B. the area of $$\Delta ABC$$  is minimum when it is isosceles
C. the perimeter of $$\Delta ABC$$  is minimum when it is isosceles
D. none of these
Releted Question 3

The normal to the curve $$x = a\left( {\cos \theta + \theta \sin \theta } \right),y = a\left( {\sin \theta - \theta \cos \theta } \right)$$        at any point $$'\theta '$$ is such that

A. it makes a constant angle with the $$x - $$axis
B. it passes through the origin
C. it is at a constant distance from the origin
D. none of these
Releted Question 4

If $$y = a\ln x + b{x^2} + x$$     has its extremum values at $$x = - 1$$  and $$x = 2,$$  then

A. $$a = 2,b = - 1$$
B. $$a = 2,b = - \frac{1}{2}$$
C. $$a = - 2,b = \frac{1}{2}$$
D. none of these

Practice More Releted MCQ Question on
Application of Derivatives


Practice More MCQ Question on Maths Section