Question

If $${\text{amp}}\frac{{z - 1}}{{z + 1}} = \frac{\pi }{3}$$    then $$z$$ represents a point on

A. a straight line
B. a circle  
C. a pair of lines
D. None of these
Answer :   a circle
Solution :
$$\eqalign{ & {\text{If }}\left| {\frac{{z - 1}}{{z + 1}}} \right| = r\,{\text{then }}\frac{{z - 1}}{{z + 1}} = r\left( {\cos \frac{\pi }{3} + i\sin \frac{\pi }{3}} \right) = r\left( {\frac{1}{2} + i\frac{{\sqrt 3 }}{2}} \right) \cr & {\text{or, }}\frac{{\left( {x - 1} \right) + iy}}{{\left( {x + 1} \right) + iy}} = \frac{r}{2} + i\frac{{r\sqrt 3 }}{2} \cr & {\text{or, }}\left( {x - 1} \right) + iy = \frac{r}{2}\left( {x + 1} \right) - \frac{{yr\sqrt 3 }}{2} + i\left\{ {\frac{{ry}}{2} + \frac{{r\sqrt 3 }}{2}\left( {x + 1} \right)} \right\} \cr} $$
\[\left. \begin{array}{l} \Rightarrow \,\,x - 1 = \frac{r}{2}\left( {x + 1} \right) - \frac{{yr\sqrt 3 }}{2}\\ \,\,\,\,\,\,\,y = \frac{{ry}}{2} + \frac{{r\sqrt 3 }}{2}\left( {x + 1} \right) \end{array} \right\}\]
$$ \Rightarrow \,\,\frac{{x - 1}}{y} = \frac{{x + 1 - y\sqrt 3 }}{{y + \sqrt 3 \left( {x + 1} \right)}}.$$
On simplification, $$\sqrt 3 \left( {{x^2} + {y^2}} \right) - 2y - \sqrt 3 = 0,$$      which is a circle.

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section