Question

If $$\alpha \in \left( {0,\frac{\pi }{2}} \right){\text{then }}\sqrt {{x^2} + x} + \frac{{{{\tan }^2}\alpha }}{{\sqrt {{x^2} + x} }}$$        is always greater than or equal to

A. $$2\tan \alpha $$  
B. 1
C. 2
D. $${\sec ^2}\alpha $$
Answer :   $$2\tan \alpha $$
Solution :
Let $$a = \sqrt {{x^2} + x} \,\,{\text{and}}\,\,b = \frac{{{{\tan }^2}\alpha }}{{\sqrt {{x^2} + x} }}$$
then using A.M. $$ \geqslant $$ G.M., we get $$\frac{{a + b}}{2} \geqslant \sqrt {ab} $$
$$\eqalign{ & \Rightarrow \,\,a + b \geqslant 2\sqrt {ab} \cr & \Rightarrow \,\,\sqrt {{x^2} + x} + \frac{{{{\tan }^2}\alpha }}{{\sqrt {{x^2} + x} }} \geqslant 2\sqrt {{{\tan }^2}\alpha } = 2\tan \alpha \cr & \left[ {\because \,\,\alpha \in \left( {0,\frac{\pi }{2}} \right)} \right]. \cr} $$

Releted MCQ Question on
Algebra >> Quadratic Equation

Releted Question 1

If $$\ell ,m,n$$  are real, $$\ell \ne m,$$  then the roots by the equation: $$\left( {\ell - m} \right){x^2} - 5\left( {\ell + m} \right)x - 2\left( {\ell - m} \right) = 0$$         are

A. Real and equal
B. Complex
C. Real and unequal
D. None of these
Releted Question 2

The equation $$x + 2y + 2z = 1{\text{ and }}2x + 4y + 4z = 9{\text{ have}}$$

A. Only one solution
B. Only two solutions
C. Infinite number of solutions
D. None of these
Releted Question 3

Let $$a > 0, b > 0$$    and $$c > 0$$ . Then the roots of the equation $$a{x^2} + bx + c = 0$$

A. are real and negative
B. have negative real parts
C. both (A) and (B)
D. none of these
Releted Question 4

Both the roots of the equation $$\left( {x - b} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - b} \right) = 0$$           are always

A. positive
B. real
C. negative
D. none of these.

Practice More Releted MCQ Question on
Quadratic Equation


Practice More MCQ Question on Maths Section