Question

If $$\frac{\alpha }{{\alpha '}},\,\frac{\beta }{{\beta '}},\,\frac{\gamma }{{\gamma '}}$$   are not all equal, the point of intersection of the lines $$\frac{{x - \alpha '}}{\alpha } = \frac{{y - \beta '}}{\beta } = \frac{{z - \gamma '}}{\gamma }$$      and $$\frac{{x - \alpha }}{{\alpha '}} = \frac{{y - \beta }}{{\beta '}} = \frac{{z - \gamma }}{{\gamma '}}$$      is :

A. $$\left( {\alpha - \alpha ',\,\beta - \beta ',\,\gamma - \gamma '} \right)$$
B. $$\left( {\alpha + \alpha ',\,\beta + \beta ',\,\gamma + \gamma '} \right)$$  
C. $$\left( {\alpha \alpha ',\,\beta \beta ',\,\gamma \gamma '} \right)$$
D. none because they are nonintersecting
Answer :   $$\left( {\alpha + \alpha ',\,\beta + \beta ',\,\gamma + \gamma '} \right)$$
Solution :
From the question, the lines are not parallel.
Any point on the first line is $$\left( {\alpha ' + \alpha r,\,\beta ' + \beta r,\,\gamma ' + \gamma r} \right).$$       It is on the other line if
$$\eqalign{ & \frac{{\alpha ' + \alpha r - \alpha }}{{\alpha '}} = \frac{{\beta ' + \beta r - \beta }}{{\beta '}} = \frac{{\gamma ' + \gamma r - \gamma }}{{\gamma '}} \cr & \Rightarrow 1 + \frac{{\alpha \left( {r - 1} \right)}}{{\alpha '}} = 1 + \frac{{\beta \left( {r - 1} \right)}}{{\beta '}} = 1 + \frac{{\gamma \left( {r - 1} \right)}}{{\gamma '}} \cr & \Rightarrow \frac{{\alpha \left( {r - 1} \right)}}{{\alpha '}} = \frac{{\beta \left( {r - 1} \right)}}{{\beta '}} = \frac{{\gamma \left( {r - 1} \right)}}{{\gamma '}} \cr & \Rightarrow r - 1 = 0\,\,\,\,\,\,\left( {\because \frac{\alpha }{{\alpha '}} = \frac{\beta }{{\beta '}} = \frac{\gamma }{{\gamma '}}{\text{ is not true}}} \right) \cr} $$
$$\therefore $$  the point of intersection is $$\left( {\alpha ' + \alpha .1,\,\beta ' + \beta .1,\,\gamma ' + \gamma .1} \right).$$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section