Question

If all real values of $$x$$ obtained from the equation $${4^x} - \left( {a - 3} \right){2^x} + a - 4 = 0$$      are non-positive then

A. $$a \in \left( {4,5} \right]$$  
B. $$a \in \left( {0,4} \right)$$
C. $$a \in \left( {4, + \infty } \right)$$
D. None of these
Answer :   $$a \in \left( {4,5} \right]$$
Solution :
$$\eqalign{ & {\left( {{2^x}} \right)^2} - \left( {a - 4} \right){2^x} - {2^x} + \left( {a - 4} \right) = 0 \cr & \Rightarrow \,\,\left( {{2^x} - a + 4} \right)\left( {{2^x} - 1} \right) = 0 \cr & \therefore \,\,{2^x} = 1,a - 4.\,\,{\text{As }}x \leqslant 0,0 < a - 4 \leqslant 1. \cr} $$

Releted MCQ Question on
Algebra >> Quadratic Equation

Releted Question 1

If $$\ell ,m,n$$  are real, $$\ell \ne m,$$  then the roots by the equation: $$\left( {\ell - m} \right){x^2} - 5\left( {\ell + m} \right)x - 2\left( {\ell - m} \right) = 0$$         are

A. Real and equal
B. Complex
C. Real and unequal
D. None of these
Releted Question 2

The equation $$x + 2y + 2z = 1{\text{ and }}2x + 4y + 4z = 9{\text{ have}}$$

A. Only one solution
B. Only two solutions
C. Infinite number of solutions
D. None of these
Releted Question 3

Let $$a > 0, b > 0$$    and $$c > 0$$ . Then the roots of the equation $$a{x^2} + bx + c = 0$$

A. are real and negative
B. have negative real parts
C. both (A) and (B)
D. none of these
Releted Question 4

Both the roots of the equation $$\left( {x - b} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - b} \right) = 0$$           are always

A. positive
B. real
C. negative
D. none of these.

Practice More Releted MCQ Question on
Quadratic Equation


Practice More MCQ Question on Maths Section