Question

If $$ABCD$$   is a cyclic quadrilateral such that $$12\tan A - 5 = 0$$    and $$5\cos B + 3 = 0$$    then the quadratic equation whose roots are $$\cos C,\tan D$$   is

A. $$39{x^2} - 16x - 48 = 0$$  
B. $$39{x^2} + 88x + 48 = 0$$
C. $$39{x^2} - 88x + 48 = 0$$
D. None of these
Answer :   $$39{x^2} - 16x - 48 = 0$$
Solution :
In a convex quadrilateral no angle is greater than $${180^ \circ }$$
$$\eqalign{ & {\text{Here, }}\tan A = \frac{5}{{12}}.\,{\text{So, }}0 < A < \frac{\pi }{2}\,{\text{and }}\frac{\pi }{2} < C < \pi \,\,\left( {\because \,\,A + C = {{180}^ \circ }} \right) \cr & \therefore \,\,\tan \left( {\pi - C} \right) = \frac{5}{{12}},\,{\text{i}}{\text{.e}}{\text{., }}\tan C = - \frac{5}{{12}}\,\,\,\,\,\,\therefore \,\,\cos C = - \frac{{12}}{{13}}. \cr & {\text{Also, }}\cos B = - \frac{3}{5}.\,{\text{So, }}\frac{\pi }{2} < B < \pi \,\,{\text{and }}0 < D < \frac{\pi }{2}\,\,\,\,\,\,\left( {\because \,\,B + D = {{180}^ \circ }} \right) \cr & \therefore \,\,\cos \left( {\pi - D} \right) = - \frac{3}{5},\,{\text{i}}{\text{.e}}{\text{., }}\cos D = \frac{3}{5}\,\,\,\,\,\,\therefore \,\,\tan D = \frac{4}{3}. \cr} $$
∴ the required equation is $${x^2} - \left( { - \frac{{12}}{{13}} + \frac{4}{3}} \right)x + \left( { - \frac{{12}}{{13}}} \right) \cdot \frac{4}{3} = 0.$$

Releted MCQ Question on
Trigonometry >> Trigonometric Ratio and Identities

Releted Question 1

If $$\tan \theta = - \frac{4}{3},$$   then $$\sin \theta $$  is

A. $$ - \frac{4}{5}{\text{ but not }}\frac{4}{5}$$
B. $$ - \frac{4}{5}{\text{ or }}\frac{4}{5}$$
C. $$ \frac{4}{5}{\text{ but not }} - \frac{4}{5}$$
D. None of these
Releted Question 2

If $$\alpha + \beta + \gamma = 2\pi ,$$    then

A. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
B. $$\tan \frac{\alpha }{2}\tan \frac{\beta }{2} + \tan \frac{\beta }{2}\tan \frac{\gamma }{2} + \tan \frac{\gamma }{2}\tan \frac{\alpha }{2} = 1$$
C. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = - \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
D. None of these
Releted Question 3

Given $$A = {\sin ^2}\theta + {\cos ^4}\theta $$    then for all real values of $$\theta $$

A. $$1 \leqslant A \leqslant 2$$
B. $$\frac{3}{4} \leqslant A \leqslant 1$$
C. $$\frac{13}{16} \leqslant A \leqslant 1$$
D. $$\frac{3}{4} \leqslant A \leqslant \frac{{13}}{{16}}$$
Releted Question 4

The value of the expression $$\sqrt 3 \,{\text{cosec}}\,{\text{2}}{{\text{0}}^ \circ } - \sec {20^ \circ }$$     is equal to

A. 2
B. $$\frac{{2\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$
C. 4
D. $$\frac{{4\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$

Practice More Releted MCQ Question on
Trigonometric Ratio and Identities


Practice More MCQ Question on Maths Section