Question
If $$ABCD$$ is a convex quadrilateral such that $$4\sec A + 5 = 0$$ then the quadratic equation whose roots are $$\tan A$$ and $${\text{cosec}}\,A$$ is
A.
$$12{x^2} - 29x + 15 = 0$$
B.
$$12{x^2} - 11x - 15 = 0$$
C.
$$12{x^2} + 11x - 15 = 0$$
D.
None of these
Answer :
$$12{x^2} - 11x - 15 = 0$$
Solution :
$$\sec A = - \frac{5}{4}.\,{\text{So, }}\frac{\pi }{2} < A < \pi .\,{\text{Hence,}}\tan A = - \frac{3}{4}\,{\text{and cosec}}\,A = \frac{5}{3}.$$
∴ the required equation is $${x^2} - \left( { - \frac{3}{4} + \frac{5}{3}} \right)x + \left( { - \frac{3}{4}} \right) \times \frac{5}{3} = 0.$$