Question

If $$a,b,c,d > 0,x \in R$$     and $$\left( {{a^2} + {b^2} + {c^2}} \right){x^2} - 2\left( {ab + bc + cd} \right)x + {b^2} + {c^2} + {d^2} \leqslant 0.$$           Then, \[\left| {\begin{array}{*{20}{c}} {33}&{14}&{\log a}\\ {65}&{27}&{\log b}\\ {97}&{40}&{\log c} \end{array}} \right|\]    is equal to

A. $$1$$
B. $$ - 1$$
C. $$2$$
D. $$0$$  
Answer :   $$0$$
Solution :
Given,
$$\eqalign{ & \left( {{a^2} + {b^2} + {c^2}} \right){x^2} - 2\left( {ab + bc + cd} \right)x + {b^2} + {c^2} + {d^2} \leqslant 0 \cr & \Rightarrow {\left( {ax - b} \right)^2} + {\left( {bx - c} \right)^2} + {\left( {cx - d} \right)^2} \leqslant 0 \cr & \Rightarrow {\left( {ax - b} \right)^2} + {\left( {bx - c} \right)^2} + {\left( {cx - d} \right)^2} = 0 \cr & \Rightarrow \frac{b}{a} = \frac{c}{b} = \frac{d}{c} = x \cr & \Rightarrow {b^2} = ac{\text{ or }}2\log b = \log a + \log c \cr} $$
Now, \[\Delta = \left| {\begin{array}{*{20}{c}} {33}&{14}&{\log a}\\ {65}&{27}&{\log b}\\ {97}&{40}&{\log c} \end{array}} \right|\]
Apply $${R_1} \to {R_1} + {R_3};$$
\[\Delta = \left| {\begin{array}{*{20}{c}} {130}&{54}&{\log a + \log c}\\ {65}&{27}&{\log b}\\ {97}&{40}&{\log c} \end{array}} \right| = 0\]
Now, $${R_1} \to {R_1} - 2{R_2};$$
\[\Delta = \left| {\begin{array}{*{20}{c}} 0&0&0\\ {65}&{27}&{\log b}\\ {97}&{40}&{\log c} \end{array}} \right| = 0\]

Releted MCQ Question on
Algebra >> Matrices and Determinants

Releted Question 1

Consider the set $$A$$ of all determinants of order 3 with entries 0 or 1 only. Let $$B$$  be the subset of $$A$$ consisting of all determinants with value 1. Let $$C$$  be the subset of $$A$$ consisting of all determinants with value $$- 1.$$ Then

A. $$C$$ is empty
B. $$B$$  has as many elements as $$C$$
C. $$A = B \cup C$$
D. $$B$$  has twice as many elements as elements as $$C$$
Releted Question 2

If $$\omega \left( { \ne 1} \right)$$  is a cube root of unity, then
\[\left| {\begin{array}{*{20}{c}} 1&{1 + i + {\omega ^2}}&{{\omega ^2}}\\ {1 - i}&{ - 1}&{{\omega ^2} - 1}\\ { - i}&{ - i + \omega - 1}&{ - 1} \end{array}} \right|=\]

A. 0
B. 1
C. $$i$$
D. $$\omega $$
Releted Question 3

Let $$a, b, c$$  be the real numbers. Then following system of equations in $$x, y$$  and $$z$$
$$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} - \frac{{{z^2}}}{{{c^2}}} = 1,$$    $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1,$$    $$ - \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1$$     has

A. no solution
B. unique solution
C. infinitely many solutions
D. finitely many solutions
Releted Question 4

If $$A$$ and $$B$$ are square matrices of equal degree, then which one is correct among the followings?

A. $$A + B = B + A$$
B. $$A + B = A - B$$
C. $$A - B = B - A$$
D. $$AB=BA$$

Practice More Releted MCQ Question on
Matrices and Determinants


Practice More MCQ Question on Maths Section