Question

If a tangent to the circle $${x^2} + {y^2} = 1$$   intersects the coordinate axes at distinct points $$P$$ and $$Q,$$  then the locus of the mid-point of $$PQ$$  is:

A. $${x^2} + {y^2} - 4{x^2}{y^2} = 0$$  
B. $${x^2} + {y^2} - 2xy = 0$$
C. $${x^2} + {y^2} - 16{x^2}{y^2} = 0$$
D. $${x^2} + {y^2} - 2{x^2}{y^2} = 0$$
Answer :   $${x^2} + {y^2} - 4{x^2}{y^2} = 0$$
Solution :
Let any tangent to circle $${x^2} + {y^2} = 1$$   is $$x\,\cos \,\theta + y\,\sin \,\theta = 1$$
Since, $$P$$ and $$Q$$ are the point of intersection on the co-ordinate axes.
Then $$P \equiv \left( {\frac{1}{{\cos \,\theta }},\,0} \right)\,\,\& \,\,Q \equiv \left( {0,\,\frac{1}{{\sin \,\theta }}} \right)$$
$$\therefore $$ mid-point of $$PQ$$  be
$$\eqalign{ & M \equiv \left( {\frac{1}{{2\,\cos \,\theta }},\,\,\frac{1}{{2\,\sin \,\theta }}} \right) \equiv \left( {h,\,k} \right) \cr & \Rightarrow \cos \,\theta = \frac{1}{{2h}}.....(1) \cr & \Rightarrow \sin \,\theta = \frac{1}{{2k}}.....(2) \cr} $$
Now squaring and adding equation (1) and (2)
$$\eqalign{ & \frac{1}{{{h^2}}} + \frac{1}{{{k^2}}} = 4 \cr & \Rightarrow {h^2} + {k^2} = 4{h^2}{k^2} \cr} $$
$$\therefore $$ locus of $$M$$ is : $${x^2} + {y^2} - 4{x^2}{y^2} = 0$$

Releted MCQ Question on
Geometry >> Circle

Releted Question 1

A square is inscribed in the circle $${x^2} + {y^2} - 2x + 4y + 3 = 0.$$      Its sides are parallel to the coordinate axes. The one vertex of the square is-

A. $$\left( {1 + \sqrt 2 ,\, - 2 } \right)$$
B. $$\left( {1 - \sqrt 2 ,\, - 2 } \right)$$
C. $$\left( {1 - 2 ,\, + \sqrt 2 } \right)$$
D. none of these
Releted Question 2

Two circles $${x^2} + {y^2} = 6$$    and $${x^2} + {y^2} - 6x + 8 = 0$$     are given. Then the equation of the circle through their points of intersection and the point $$\left( {1,\,1} \right)$$  is-

A. $${x^2} + {y^2} - 6x + 4 = 0$$
B. $${x^2} + {y^2} - 3x + 1 = 0$$
C. $${x^2} + {y^2} - 4y + 2 = 0$$
D. none of these
Releted Question 3

The centre of the circle passing through the point (0, 1) and touching the curve $$y = {x^2}$$   at $$\left( {2,\,4} \right)$$  is-

A. $$\left( {\frac{{ - 16}}{5},\,\frac{{27}}{{10}}} \right)$$
B. $$\left( {\frac{{ - 16}}{7},\,\frac{{53}}{{10}}} \right)$$
C. $$\left( {\frac{{ - 16}}{5},\,\frac{{53}}{{10}}} \right)$$
D. none of these
Releted Question 4

The equation of the circle passing through $$\left( {1,\,1} \right)$$  and the points of intersection of $${x^2} + {y^2} + 13x - 3y = 0$$      and $$2{x^2} + 2{y^2} + 4x - 7y - 25 = 0$$      is-

A. $$4{x^2} + 4{y^2} - 30x - 10y - 25 = 0$$
B. $$4{x^2} + 4{y^2} + 30x - 13y - 25 = 0$$
C. $$4{x^2} + 4{y^2} - 17x - 10y + 25 = 0$$
D. none of these

Practice More Releted MCQ Question on
Circle


Practice More MCQ Question on Maths Section