Question

If $$A = \left( {p,\,q,\,r} \right)$$    and $$B = \left( {p',\,q',\,r'} \right)$$    are two points on the line $$\lambda x = \mu y = \nu z$$    such that $$OA = a,\,OB = b$$    then $$pp' + qq' + rr'$$    is equal to :

A. $$a + b$$
B. $$ab$$  
C. $$\sqrt {{a^2} + {b^2}} $$
D. none of these
Answer :   $$ab$$
Solution :
$$\eqalign{ & {\text{Here, }}\lambda p = \mu q = \nu r{\text{ and }}\lambda p' = \mu q' = \nu r' \cr & {\text{So, }}\frac{{p'}}{p} = \frac{{q'}}{q} = \frac{{r'}}{r} = \frac{{\sqrt {p{'^2} + q{'^2} + r{'^2}} }}{{\sqrt {{p^2} + {q^2} + {r^2}} }} = \frac{{\sqrt {{b^2}} }}{{\sqrt {{a^2}} }} = \frac{b}{a} \cr & \therefore \,pp' + qq' + rr' = \frac{b}{a}\left( {{p^2} + {q^2} + {r^2}} \right) = \frac{b}{a}.{a^2} = ab \cr} $$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section