Question
If a neglegibly small current is passed through a wire of length $$15\,m$$ and of resistance $$5\,\Omega $$ having uniform cross-section of $$6 \times {10^{ - 7}}{m^2},$$ then coefficient of resistivity of material, is
A.
$$1 \times {10^{ - 7}}\Omega - m$$
B.
$$2 \times {10^{ - 7}}\Omega - m$$
C.
$$3 \times {10^{ - 7}}\Omega - m$$
D.
$$4 \times {10^{ - 7}}\Omega - m$$
Answer :
$$2 \times {10^{ - 7}}\Omega - m$$
Solution :
Resistance of a given conducting wire is given by
$$R = \rho \cdot \frac{l}{A}$$
where, $$\rho $$ is the specific resistance of the material of the conductor.
Here, $$l = 15\,m$$
$$\eqalign{
& A = 6 \times {10^{ - 7}}{m^2} \cr
& R = 5\,\Omega ,\rho = ? \cr
& \therefore \rho = \frac{{RA}}{l} \cr
& = \frac{{5 \times 6 \times {{10}^{ - 7}}}}{{15}} \cr
& = 2 \times {10^{ - 7}}\Omega - m \cr} $$