Question

If $$a = \min \left\{ {{x^2} + 4x + 5,\,x\, \in \,R} \right\}$$      and $$b = \mathop {\lim }\limits_{\theta \to 0} \frac{{1 - \cos \,2\theta }}{{{\theta ^2}}},$$    then the value of $$\sum\limits_{r = 0}^n {{a^r} \cdot {b^{n - r}}} $$   is :

A. $$\frac{{{2^{n + 1}} - 1}}{{4 \cdot {2^n}}}$$
B. $${{2^{n + 1}} - 1}$$  
C. $$\frac{{{2^{n + 1}} - 1}}{{3 \cdot {2^n}}}$$
D. none of these
Answer :   $${{2^{n + 1}} - 1}$$
Solution :
$$\eqalign{ & {x^2} + 4x + 5 = {\left( {x + 2} \right)^2} + 1 \geqslant 1 \cr & {\text{So, }}a = 1 \cr & b = \mathop {\lim }\limits_{\theta \to 0} \frac{{2\,{{\sin }^2}\theta }}{{{\theta ^2}}} = 2 \cr & \sum\limits_{r = 0}^n {{a^r} \cdot {b^{n - r}}} = {b^n} + a{b^{n - 1}} + {a^2}{b^{n - 2}} + ..... + {a^n} \cr & = \frac{{{b^n}\left[ {1 - {{\left( {\frac{a}{b}} \right)}^{n + 1}}} \right]}}{{1 - \frac{a}{b}}} \cr & = \frac{{{2^n}\left[ {1 - {{\left( {\frac{1}{2}} \right)}^{n + 1}}} \right]}}{{1 - \frac{1}{2}}} \cr & = \frac{{{2^{n + 1}}\left( {{2^{n + 1}} - 1} \right)}}{{{2^{n + 1}}}} \cr & = \left( {{2^{n + 1}} - 1} \right) \cr} $$

Releted MCQ Question on
Calculus >> Limits

Releted Question 1

lf $$f\left( x \right) = \sqrt {\frac{{x - \sin \,x}}{{x + {{\cos }^2}x}}} ,$$     then $$\mathop {\lim }\limits_{x\, \to \,\infty } f\left( x \right)$$    is-

A. $$0$$
B. $$\infty $$
C. $$1$$
D. none of these
Releted Question 2

If $$G\left( x \right) = - \sqrt {25 - {x^2}} $$     then $$\mathop {\lim }\limits_{x\, \to \,{\text{I}}} \frac{{G\left( x \right) - G\left( I \right)}}{{x - 1}}$$     has the value-

A. $$\frac{1}{{24}}$$
B. $$\frac{1}{{5}}$$
C. $$ - \sqrt {24} $$
D. none of these
Releted Question 3

$$\mathop {\lim }\limits_{n\, \to \,\infty } \left\{ {\frac{1}{{1 - {n^2}}} + \frac{2}{{1 - {n^2}}} + ..... + \frac{n}{{1 - {n^2}}}} \right\}$$        is equal to-

A. $$0$$
B. $$ - \frac{1}{2}$$
C. $$ \frac{1}{2}$$
D. none of these
Releted Question 4

If $$\eqalign{ & f\left( x \right) = \frac{{\sin \left[ x \right]}}{{\left[ x \right]}},\,\,\left[ x \right] \ne 0 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\, = 0,\,\,\,\,\,\,\,\,\,\,\,\,\,\left[ x \right] = 0 \cr} $$
Where \[\left[ x \right]\] denotes the greatest integer less than or equal to $$x.$$ then $$\mathop {\lim }\limits_{x\, \to \,0} f\left( x \right)$$   equals

A. $$1$$
B. $$0$$
C. $$ - 1$$
D. none of these

Practice More Releted MCQ Question on
Limits


Practice More MCQ Question on Maths Section