Question

If $$a \in R$$  and the equation $$ - 3{\left( {x - \left[ x \right]} \right)^2} + 2\left( {x - \left[ x \right]} \right) + {a^2} = 0$$       (where $$\left[ x \right]$$ denotes the greatest integer $$ \leqslant x$$ ) has no integral solution, then all possible values of a lie in the interval:

A. $$\left( { - 2, - 1} \right)$$
B. $$\left( { - \infty , - 2} \right) \cup \left( {2,\infty } \right)$$
C. $$\left( { - 1,0} \right) \cup \left( {0,1} \right)$$  
D. $$\left( {1,2} \right)$$
Answer :   $$\left( { - 1,0} \right) \cup \left( {0,1} \right)$$
Solution :
Consider $$ - 3{\left( {x - \left[ x \right]} \right)^2} + 2\left( {x - \left[ x \right]} \right) + {a^2} = 0\,$$
$$\eqalign{ & \Rightarrow \,3{\left\{ x \right\}^2} - 2\left\{ x \right\} - {a^2} = 0\,\,\,\,\,\,\,\left( {\because \,x - \left[ x \right] = \left\{ x \right\}} \right) \cr & \Rightarrow \,\,3\left( {{{\left\{ x \right\}}^2} - \frac{2}{3}\left\{ x \right\}} \right) = {a^2},a \ne 0 \cr & \Rightarrow \,\,{a^2} = 3\left\{ x \right\}\left( {\left\{ x \right\} - \frac{2}{3}} \right) \cr} $$
Quadratic Equation mcq solution image
$${\text{Now,}}\,\,\left\{ x \right\} \in \left( {0,1} \right)\,\,{\text{and }}\frac{{ - 2}}{3} \leqslant {a^2} < 1\,\,\,\,\left( {{\text{by graph}}} \right)$$
Since, $$x$$ is not an integer
$$\eqalign{ & \therefore \,\,a \in \left( { - 1,1} \right) - \left\{ 0 \right\} \cr & \Rightarrow \,\,a \in \left( { - 1,0} \right) \cup \left( {0,1} \right) \cr} $$

Releted MCQ Question on
Algebra >> Quadratic Equation

Releted Question 1

If $$\ell ,m,n$$  are real, $$\ell \ne m,$$  then the roots by the equation: $$\left( {\ell - m} \right){x^2} - 5\left( {\ell + m} \right)x - 2\left( {\ell - m} \right) = 0$$         are

A. Real and equal
B. Complex
C. Real and unequal
D. None of these
Releted Question 2

The equation $$x + 2y + 2z = 1{\text{ and }}2x + 4y + 4z = 9{\text{ have}}$$

A. Only one solution
B. Only two solutions
C. Infinite number of solutions
D. None of these
Releted Question 3

Let $$a > 0, b > 0$$    and $$c > 0$$ . Then the roots of the equation $$a{x^2} + bx + c = 0$$

A. are real and negative
B. have negative real parts
C. both (A) and (B)
D. none of these
Releted Question 4

Both the roots of the equation $$\left( {x - b} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - b} \right) = 0$$           are always

A. positive
B. real
C. negative
D. none of these.

Practice More Releted MCQ Question on
Quadratic Equation


Practice More MCQ Question on Maths Section