Question

If $$\overrightarrow a = \overrightarrow i + \overrightarrow j ,\,\overrightarrow b = 2\overrightarrow j - \overrightarrow k $$     and $$\overrightarrow r \times \overrightarrow a = \overrightarrow b \times \overrightarrow a ,\,\overrightarrow r \times \overrightarrow b = \overrightarrow a \times \overrightarrow b $$       then $$\frac{{\overrightarrow r }}{{\left| {\overrightarrow r } \right|}}$$ is equal to :

A. $$\frac{1}{{\sqrt {11} }}\left( {\overrightarrow i + 3\overrightarrow j - \overrightarrow k } \right)$$  
B. $$\frac{1}{{\sqrt {11} }}\left( {\overrightarrow i - 3\overrightarrow j + \overrightarrow k } \right)$$
C. $$\frac{1}{{\sqrt 3 }}\left( {\overrightarrow i - \overrightarrow j + \overrightarrow k } \right)$$
D. none of these
Answer :   $$\frac{1}{{\sqrt {11} }}\left( {\overrightarrow i + 3\overrightarrow j - \overrightarrow k } \right)$$
Solution :
$$\eqalign{ & {\text{Here, }}\overrightarrow r \times \overrightarrow a + \overrightarrow r \times \overrightarrow b = 0\,\,\,{\text{or }}\overrightarrow r \times \left( {\overrightarrow a + \overrightarrow b } \right) = 0\,\, \cr & \therefore \overrightarrow r ||\left( {\overrightarrow a + \overrightarrow b } \right) \cr & \therefore \,\overrightarrow r = t\left( {\overrightarrow a + \overrightarrow b } \right) = t\left( {\overrightarrow i + 3\overrightarrow j - \overrightarrow k } \right) \cr & \therefore \,\left| {\overrightarrow r } \right| = t.\sqrt {{1^2} + {3^2} + {1^2}} = t.\sqrt {11} \cr & \therefore \,\frac{{\overrightarrow r }}{{\left| {\overrightarrow r } \right|}} = \frac{1}{{\sqrt {11} }}\left( {\overrightarrow i + 3\overrightarrow j - \overrightarrow k } \right) \cr} $$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section