Question

If a circle passes through the point $$\left( {a,\,b} \right)$$  and cuts the circle $${x^2} + {y^2} = {p^2}$$   orthogonally, then the equation of the locus of its centre is-

A. $${x^2} + {y^2} - 3ax - 4by + \left( {{a^2} + {b^2} - {p^2}} \right) = 0$$
B. $$2ax + 2by - \left( {{a^2} - {b^2} + {p^2}} \right) = 0$$
C. $${x^2} + {y^2} - 2ax - 3by + \left( {{a^2} - {b^2} - {p^2}} \right) = 0$$
D. $$2ax + 2by - \left( {{a^2} + {b^2} + {p^2}} \right) = 0$$  
Answer :   $$2ax + 2by - \left( {{a^2} + {b^2} + {p^2}} \right) = 0$$
Solution :
Let the centre be $$\left( {\alpha ,\,\beta } \right)$$
$$\because $$ It cuts the circle $${x^2} + {y^2} = {p^2}$$   orthogonally
$$\therefore $$ Using $$2{g_1}{g_2} + 2{f_1}{f_2} = {c_1} + {c_2},$$       we get
$$\eqalign{ & 2\left( { - \alpha } \right) \times 0 + 2\left( { - \beta } \right) \times 0 = {c_1} - {p^2} \cr & \Rightarrow {c_1} = {p^2} \cr} $$
Let equation of circle is $${x^2} + {y^2} - 2\alpha x - 2\beta y + {p^2} = 0$$
It passes through $$\left( {a,\,b} \right) \Rightarrow {a^2} + {b^2} - 2\alpha a - 2\beta b + {p^2} = 0$$
$$\therefore $$ Locus of $$\left( {\alpha ,\,\beta } \right)$$  is
$$\therefore 2ax + 2by - \left( {{a^2} + {b^2} + {p^2}} \right) = 0$$

Releted MCQ Question on
Geometry >> Circle

Releted Question 1

A square is inscribed in the circle $${x^2} + {y^2} - 2x + 4y + 3 = 0.$$      Its sides are parallel to the coordinate axes. The one vertex of the square is-

A. $$\left( {1 + \sqrt 2 ,\, - 2 } \right)$$
B. $$\left( {1 - \sqrt 2 ,\, - 2 } \right)$$
C. $$\left( {1 - 2 ,\, + \sqrt 2 } \right)$$
D. none of these
Releted Question 2

Two circles $${x^2} + {y^2} = 6$$    and $${x^2} + {y^2} - 6x + 8 = 0$$     are given. Then the equation of the circle through their points of intersection and the point $$\left( {1,\,1} \right)$$  is-

A. $${x^2} + {y^2} - 6x + 4 = 0$$
B. $${x^2} + {y^2} - 3x + 1 = 0$$
C. $${x^2} + {y^2} - 4y + 2 = 0$$
D. none of these
Releted Question 3

The centre of the circle passing through the point (0, 1) and touching the curve $$y = {x^2}$$   at $$\left( {2,\,4} \right)$$  is-

A. $$\left( {\frac{{ - 16}}{5},\,\frac{{27}}{{10}}} \right)$$
B. $$\left( {\frac{{ - 16}}{7},\,\frac{{53}}{{10}}} \right)$$
C. $$\left( {\frac{{ - 16}}{5},\,\frac{{53}}{{10}}} \right)$$
D. none of these
Releted Question 4

The equation of the circle passing through $$\left( {1,\,1} \right)$$  and the points of intersection of $${x^2} + {y^2} + 13x - 3y = 0$$      and $$2{x^2} + 2{y^2} + 4x - 7y - 25 = 0$$      is-

A. $$4{x^2} + 4{y^2} - 30x - 10y - 25 = 0$$
B. $$4{x^2} + 4{y^2} + 30x - 13y - 25 = 0$$
C. $$4{x^2} + 4{y^2} - 17x - 10y + 25 = 0$$
D. none of these

Practice More Releted MCQ Question on
Circle


Practice More MCQ Question on Maths Section