Question

If $$a \cdot {3^{\tan x}} + a \cdot {3^{ - \tan x}} - 2 = 0$$      has real solutions, $$x \ne \frac{\pi }{2},0 \leqslant x \leqslant \pi ,$$    then the set of possible values of the parameter $$a$$ is

A. $$\left[ { - 1,1} \right]$$
B. $$\left[ { - 1,0} \right)$$
C. $$\left( {0,1} \right]$$  
D. $$\left( {0, + \infty } \right)$$
Answer :   $$\left( {0,1} \right]$$
Solution :
$$\eqalign{ & {\text{Let }}{3^{\tan x}} = y.\,{\text{Then }}ay + \frac{a}{y} - 2 = 0\,\,{\text{or, }}a{y^2} - 2y + a = 0. \cr & D \geqslant 0 \cr} $$
$$ \Rightarrow \,\,4 - 4{a^2} \geqslant 0.$$    Also roots are positive as $$y = {3^{\tan x}} > 0.$$
∴ sum of the root $$ = \frac{2}{a} > 0$$
$$ \Rightarrow \,\,a > 0.$$

Releted MCQ Question on
Algebra >> Quadratic Equation

Releted Question 1

If $$\ell ,m,n$$  are real, $$\ell \ne m,$$  then the roots by the equation: $$\left( {\ell - m} \right){x^2} - 5\left( {\ell + m} \right)x - 2\left( {\ell - m} \right) = 0$$         are

A. Real and equal
B. Complex
C. Real and unequal
D. None of these
Releted Question 2

The equation $$x + 2y + 2z = 1{\text{ and }}2x + 4y + 4z = 9{\text{ have}}$$

A. Only one solution
B. Only two solutions
C. Infinite number of solutions
D. None of these
Releted Question 3

Let $$a > 0, b > 0$$    and $$c > 0$$ . Then the roots of the equation $$a{x^2} + bx + c = 0$$

A. are real and negative
B. have negative real parts
C. both (A) and (B)
D. none of these
Releted Question 4

Both the roots of the equation $$\left( {x - b} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - b} \right) = 0$$           are always

A. positive
B. real
C. negative
D. none of these.

Practice More Releted MCQ Question on
Quadratic Equation


Practice More MCQ Question on Maths Section