Question

If $$\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$   are three noncoplanar nonzero vectors and $$\overrightarrow r $$ is any vector in space then $$\left( {\overrightarrow a \times \overrightarrow b } \right) \times \left( {\overrightarrow r \times \overrightarrow c } \right) + \left( {\overrightarrow b \times \overrightarrow c } \right) \times \left( {\overrightarrow r \times \overrightarrow a } \right) + \left( {\overrightarrow c \times \overrightarrow a } \right) \times \left( {\overrightarrow r \times \overrightarrow b } \right)$$               is equal to :

A. $$2\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]\overrightarrow r $$  
B. $$3\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]\overrightarrow r $$
C. $$\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]\overrightarrow r $$
D. none of these
Answer :   $$2\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]\overrightarrow r $$
Solution :
$$\eqalign{ & \left( {\overrightarrow a \times \overrightarrow b } \right) \times \left( {\overrightarrow r \times \overrightarrow c } \right) = \left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]\overrightarrow r - \left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow r } \right]\overrightarrow c ......\left( 1 \right) \cr & \left( {\overrightarrow b \times \overrightarrow c } \right) \times \left( {\overrightarrow r \times \overrightarrow a } \right) = \left[ {\overrightarrow b \,\,\overrightarrow c \,\,\overrightarrow a } \right]\overrightarrow r - \left[ {\overrightarrow b \,\,\overrightarrow c \,\,\overrightarrow r } \right]\overrightarrow a \cr & \left( {\overrightarrow c \times \overrightarrow a } \right) \times \left( {\overrightarrow r \times \overrightarrow b } \right) = \left[ {\overrightarrow c \,\,\overrightarrow a \,\,\overrightarrow b } \right]\overrightarrow r - \left[ {\overrightarrow c \,\,\overrightarrow a \,\,\overrightarrow r } \right]\overrightarrow b \cr} $$
$$\therefore $$  the expression $$ = 3\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]\overrightarrow r - \left\{ {\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow r } \right]\overrightarrow c + \left[ {\overrightarrow b \,\,\overrightarrow c \,\,\overrightarrow r } \right]\overrightarrow a + \left[ {\overrightarrow c \,\,\overrightarrow a \,\,\overrightarrow r } \right]\overrightarrow b } \right\}......\left( 2 \right)$$
Again, $$\left( {\overrightarrow a \times \overrightarrow b } \right) \times \left( {\overrightarrow r \times \overrightarrow c } \right) = \left[ {\overrightarrow a \,\,\overrightarrow r \,\,\overrightarrow c } \right]\overrightarrow b - \left[ {\overrightarrow b \,\,\overrightarrow c \,\,\overrightarrow r } \right]\overrightarrow a ......\left( 3 \right)$$
From (1) and (3), $$\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]\overrightarrow r - \left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow r } \right]\overrightarrow c = \left[ {\overrightarrow a \,\,\overrightarrow r \,\,\overrightarrow c } \right]\overrightarrow b - \left[ {\overrightarrow b \,\,\overrightarrow c \,\,\overrightarrow r } \right]\overrightarrow a $$
$$\therefore \,\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]\overrightarrow r = \left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow r } \right]\overrightarrow c + \left[ {\overrightarrow c \,\,\overrightarrow a \,\,\overrightarrow r } \right]\overrightarrow b + \left[ {\overrightarrow b \,\,\overrightarrow c \,\,\overrightarrow r } \right]\overrightarrow a $$
$$\therefore $$  from (2), the expression $$ = 3\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]\overrightarrow r - \left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]\overrightarrow r = 2\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]\overrightarrow r .$$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section