Question

If $$\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$   are the position vectors of corners $$A,\,B,\,C$$   of a parallelogram $$ABCD,$$   then what is the position vector of the corner $$D\,?$$

A. $$\overrightarrow a + \overrightarrow b + \overrightarrow c $$
B. $$\overrightarrow a + \overrightarrow b - \overrightarrow c $$
C. $$\overrightarrow a - \overrightarrow b + \overrightarrow c $$  
D. $$ - \overrightarrow a + \overrightarrow b + \overrightarrow c $$
Answer :   $$\overrightarrow a - \overrightarrow b + \overrightarrow c $$
Solution :
Let $$O$$ be the origin and $$ABCD$$   be the parallelogram.
$$\eqalign{ & \ln \,\Delta ODC, \cr & \overrightarrow {OD} = \overrightarrow {OC} + \overrightarrow {CD} \cr & \overrightarrow {CD} = - \overrightarrow {AB} \cr & {\text{and, }}\overrightarrow {AB} = \overrightarrow {OB} - \overrightarrow {OA} \,\,\left[ {\ln \,\Delta AOB} \right] \cr & = \overrightarrow b - \overrightarrow a \cr & {\text{Thus, }}\overrightarrow {CD} = - \overrightarrow {AB} = \overrightarrow a - \overrightarrow b \cr} $$
3D Geometry and Vectors mcq solution image
$$\eqalign{ & {\text{So, }}\overrightarrow {OD} = \overrightarrow c + \overrightarrow a - \overrightarrow b \cr & \left[ {{\text{since, }}\overrightarrow {OC} = \overrightarrow C {\text{ and }}\overrightarrow {CD} = \overrightarrow a - \overrightarrow b } \right] \cr} $$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section