Question

If $$\overrightarrow a + \overrightarrow b \bot \overrightarrow a $$   and $$\left| {\overrightarrow b } \right| = \sqrt 2 \left| {\overrightarrow a } \right|$$   then :

A. $$\left( {2\overrightarrow a + \overrightarrow b } \right)||\overrightarrow b $$
B. $$\left( {2\overrightarrow a + \overrightarrow b } \right) \bot \overrightarrow b $$  
C. $$\left( {2\overrightarrow a - \overrightarrow b } \right) \bot \overrightarrow b $$
D. $$\left( {2\overrightarrow a + \overrightarrow b } \right) \bot \overrightarrow a $$
Answer :   $$\left( {2\overrightarrow a + \overrightarrow b } \right) \bot \overrightarrow b $$
Solution :
$$\eqalign{ & {\text{Here, }}\overrightarrow a .\left( {\overrightarrow a + \overrightarrow b } \right) = 0{\text{ or }}{\left| {\overrightarrow a } \right|^2} + \overrightarrow a .\overrightarrow b = 0\,\,\,{\text{or }}\frac{1}{2}{\text{ }}{\left| {\overrightarrow b } \right|^2} + \overrightarrow a .\overrightarrow b = 0 \cr & \left( {2\overrightarrow a + \overrightarrow b } \right).\overrightarrow b = 2\overrightarrow a .\overrightarrow b + {\left| {\overrightarrow b } \right|^2} = 2\left\{ {\overrightarrow a .\overrightarrow b + \frac{1}{2}{{\left| {\overrightarrow b } \right|}^2}} \right\} = 0 \cr & \therefore \,\left( {2\overrightarrow a + \overrightarrow b } \right) \bot \overrightarrow b \cr & \left( {2\overrightarrow a - \overrightarrow b } \right).\overrightarrow b = \,2\overrightarrow a .\overrightarrow b - {\left| {\overrightarrow b } \right|^2} = 2\overrightarrow a .\overrightarrow b + 2\overrightarrow a .\overrightarrow b = 4\overrightarrow a .\overrightarrow b \ne 0 \cr & \overrightarrow a .\left( {2\overrightarrow a + \overrightarrow b } \right) = 2{\left| {\overrightarrow a } \right|^2} + \overrightarrow a .\overrightarrow b = {\left| {\overrightarrow a } \right|^2} + \left( {{{\left| {\overrightarrow a } \right|}^2} + \overrightarrow a .\overrightarrow b } \right) = {\left| {\overrightarrow a } \right|^2} \ne 0 \cr} $$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section