Question

If $$a > b > 0,$$   the minimum value of $$a\sec \,\theta - b\tan \,\theta $$    is :

A. $$b-a$$
B. $$\sqrt {{a^2} + {b^2}} $$
C. $$\sqrt {{a^2} - {b^2}} $$  
D. $$2\sqrt {{a^2} - {b^2}} $$
Answer :   $$\sqrt {{a^2} - {b^2}} $$
Solution :
$$\eqalign{ & f\left( \theta \right) = a\sec \,\theta - b\tan \,\theta \cr & \therefore f'\left( \theta \right) = a\sec \,\theta .\tan \,\theta - b{\sec ^2}\theta \cr & \therefore f'\left( \theta \right) = 0 \Rightarrow \sec \,\theta \left( {a\tan \,\theta - b\sec \,\theta } \right) = 0 \cr & \Rightarrow \sec \,\theta = 0{\text{ or }}a\tan \,\theta = b\sec \,\theta \cr & {\text{But }}\sec \,\theta \ne 0 \cr & \therefore f'\left( \theta \right) = 0 \cr & \Rightarrow a\tan \,\theta = b\sec \,\theta \,\,\,\,\,\,\,\, \Rightarrow b = \frac{{a\tan \,\theta }}{{\sec \,\theta }} = a\sin \,\theta \cr & \therefore \sin \,\theta = \frac{b}{a} \cr & f''\left( \theta \right) = a\sec \,\theta .{\tan ^2}\theta + a{\sec ^3}\theta - 2b{\sec ^2}\theta .\tan \,\theta \cr & = a.\frac{a}{{\sqrt {{a^2} - {b^2}} }}.\frac{{{b^2}}}{{{{\left( {\sqrt {{a^2} - {b^2}} } \right)}^2}}} + a.{\left( {\frac{a}{{\sqrt {{a^2} - {b^2}} }}} \right)^3} - 2b{\left( {\frac{a}{{\sqrt {{a^2} - {b^2}} }}} \right)^2}.\frac{b}{{\sqrt {{a^2} - {b^2}} }} \cr & = \frac{1}{{{{\left( {{a^2} - {b^2}} \right)}^{\frac{3}{2}}}}}.\left\{ {{a^2}{b^2} + {a^4} - 2{a^2}{b^2}} \right\} \cr & = \frac{{{a^2}\left( {{a^2} - {b^2}} \right)}}{{{{\left( {{a^2} - {b^2}} \right)}^{\frac{3}{2}}}}} \cr & = \frac{{{a^2}}}{{\sqrt {{a^2} - {b^2}} }} > 0 \cr & \therefore \,\min f\left( \theta \right) = a.\frac{a}{{\sqrt {{a^2} - {b^2}} }} - b.\frac{b}{{\sqrt {{a^2} - {b^2}} }} \cr & = \frac{{{a^2} - {b^2}}}{{\sqrt {{a^2} - {b^2}} }} \cr & = \sqrt {{a^2} - {b^2}} \cr} $$

Releted MCQ Question on
Calculus >> Application of Derivatives

Releted Question 1

If  $$a + b + c = 0,$$    then the quadratic equation $$3a{x^2}+ 2bx + c = 0$$     has

A. at least one root in $$\left[ {0, 1} \right]$$
B. one root in $$\left[ {2, 3} \right]$$  and the other in $$\left[ { - 2, - 1} \right]$$
C. imaginary roots
D. none of these
Releted Question 2

$$AB$$  is a diameter of a circle and $$C$$ is any point on the circumference of the circle. Then

A. the area of $$\Delta ABC$$  is maximum when it is isosceles
B. the area of $$\Delta ABC$$  is minimum when it is isosceles
C. the perimeter of $$\Delta ABC$$  is minimum when it is isosceles
D. none of these
Releted Question 3

The normal to the curve $$x = a\left( {\cos \theta + \theta \sin \theta } \right),y = a\left( {\sin \theta - \theta \cos \theta } \right)$$        at any point $$'\theta '$$ is such that

A. it makes a constant angle with the $$x - $$axis
B. it passes through the origin
C. it is at a constant distance from the origin
D. none of these
Releted Question 4

If $$y = a\ln x + b{x^2} + x$$     has its extremum values at $$x = - 1$$  and $$x = 2,$$  then

A. $$a = 2,b = - 1$$
B. $$a = 2,b = - \frac{1}{2}$$
C. $$a = - 2,b = \frac{1}{2}$$
D. none of these

Practice More Releted MCQ Question on
Application of Derivatives


Practice More MCQ Question on Maths Section