Question

If $$a>2b>0$$    then the positive value of $$m$$ for which $$y = mx - b\sqrt {1 + {m^2}} $$     is a common tangent to $${x^2} + {y^2} = {b^2}$$   and $${\left( {x - a} \right)^2} + {y^2} = {b^2}$$    is :

A. $$\frac{{2b}}{{\sqrt {{a^2} - 4{b^2}} }}$$  
B. $$\frac{{\sqrt {{a^2} - 4{b^2}} }}{{2b}}$$
C. $$\frac{{2b}}{{a - 2b}}$$
D. $$\frac{b}{{a - 2b}}$$
Answer :   $$\frac{{2b}}{{\sqrt {{a^2} - 4{b^2}} }}$$
Solution :
Given that $$a>2b>0$$    and $$m>0$$
Also $$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,y = mx - b\sqrt {1 + {m^2}} .....(1)$$
is tangent to $$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{x^2} + {y^2} = {b^2}.....(2)$$
as well as to $${\left( {x - a} \right)^2} + {y^2} = {b^2}.....(3)$$
$$\because $$ (1) is tangent to (3)
$$\therefore \left| {\frac{{am - b\sqrt {1 + {m^2}} }}{{\sqrt {{m^2} + 1} }}} \right| = b$$
[ length of perpendicular from $$\left( {a,\,0} \right)$$  to (1) $$=$$ radius $$b$$ ]
$$\eqalign{ & \Rightarrow am - b\sqrt {1 + {m^2}} = \pm b\sqrt {1 + {m^2}} \cr & \Rightarrow am - 2b\sqrt {1 + {m^2}} = 0 \cr & {\text{or, }}am = 0\,\,\left( {{\text{not possible as }}a,\,m > 0} \right) \cr & \Rightarrow {a^2}{m^2} = 4{b^2}\left( {1 + {m^2}} \right) \cr & \Rightarrow {m^2} = \frac{{4{b^2}}}{{{a^2} - 4{b^2}}} \cr & \Rightarrow m = \frac{{2b}}{{\sqrt {{a^2} - 4{b^2}} }}\,\,\,\left( {\because m > 0} \right) \cr} $$

Releted MCQ Question on
Geometry >> Locus

Releted Question 1

The equation $$\frac{{{x^2}}}{{1 - r}} - \frac{{{y^2}}}{{1 + r}} = 1,\,\,\,r > 1$$       represents :

A. an ellipse
B. a hyperbola
C. a circle
D. none of these
Releted Question 2

The equation $$2{x^2} + 3{y^2} - 8x - 18y + 35 = k$$       represents :

A. no locus if $$k>0$$
B. an ellipse if $$k<0$$
C. a point if $$k=0$$
D. a hyperbola if $$k>0$$
Releted Question 3

If $$a>2b>0$$    then the positive value of $$m$$ for which $$y = mx - b\sqrt {1 + {m^2}} $$     is a common tangent to $${x^2} + {y^2} = {b^2}$$   and $${\left( {x - a} \right)^2} + {y^2} = {b^2}$$    is :

A. $$\frac{{2b}}{{\sqrt {{a^2} - 4{b^2}} }}$$
B. $$\frac{{\sqrt {{a^2} - 4{b^2}} }}{{2b}}$$
C. $$\frac{{2b}}{{a - 2b}}$$
D. $$\frac{b}{{a - 2b}}$$
Releted Question 4

The locus of the mid-point of the line segment joining the focus to a moving point on the parabola $${y^2} = 4ax$$   is another parabola with directrix :

A. $$x = - a$$
B. $$x = - \frac{a}{2}$$
C. $$x = 0$$
D. $$x = \frac{a}{2}$$

Practice More Releted MCQ Question on
Locus


Practice More MCQ Question on Maths Section