Question

If $${a^2} + {b^2} + {c^2} = 1,\,\,{\text{then }}\,ab + bc + ca$$        lies in the interval

A. $$\left[ {\frac{1}{2},2} \right]$$
B. $$\left[ { - 1,2} \right]$$
C. $$\left[ { - \frac{1}{2},1} \right]$$  
D. $$\left[ { - 1,\frac{1}{2}} \right]$$
Answer :   $$\left[ { - \frac{1}{2},1} \right]$$
Solution :
$$\eqalign{ & {\text{Given that }}\,{a^2} + {b^2} + {c^2} = 1\,\,\,\,\,\,\,\,\,\,\,.....\left( 1 \right) \cr & {\text{We know }}{\left( {a + b + c} \right)^2} \geqslant 0 \cr & \Rightarrow \,{a^2} + {b^2} + {c^2} + 2ab + 2bc + 2ca \geqslant 0 \cr & \Rightarrow \,2\left( {ab + bc + ca} \right) \geqslant - 1\,\,\,\,\,\,\,\,\,\left[ {{\text{Using}}\left( 1 \right)} \right] \cr & \Rightarrow \,ab + bc + ca \geqslant - \frac{1}{2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,.....\left( 2 \right) \cr & {\text{Also we know that}} \cr & \frac{1}{2}\left[ {{{\left( {a - b} \right)}^2} + {{\left( {b - c} \right)}^2} + {{\left( {c - a} \right)}^2}} \right] \geqslant 0 \cr & \Rightarrow \,{a^2} + {b^2} + {c^2} - ab - bc - ca \geqslant 0 \cr & \Rightarrow \,ab + bc + ca \leqslant 1\,\,\,\,\,\,\,\,\,\left[ {{\text{Using}}\left( 1 \right)} \right]\,\,\,\,\,.....\left( 3 \right) \cr & \,\,\,\,\,{\text{Combining}}\left( 2 \right){\text{and}}\left( 3 \right){\text{,we get}} \cr & \,\, - \frac{1}{2} \leqslant ab + bc + ca \leqslant 1 \cr & \therefore \,\,ab + bc + ca \in \left[ { - \frac{1}{2},1} \right] \cr & \therefore \,\,\left( {\text{C}} \right){\text{is the correct answer}}{\text{.}} \cr} $$

Releted MCQ Question on
Algebra >> Quadratic Equation

Releted Question 1

If $$\ell ,m,n$$  are real, $$\ell \ne m,$$  then the roots by the equation: $$\left( {\ell - m} \right){x^2} - 5\left( {\ell + m} \right)x - 2\left( {\ell - m} \right) = 0$$         are

A. Real and equal
B. Complex
C. Real and unequal
D. None of these
Releted Question 2

The equation $$x + 2y + 2z = 1{\text{ and }}2x + 4y + 4z = 9{\text{ have}}$$

A. Only one solution
B. Only two solutions
C. Infinite number of solutions
D. None of these
Releted Question 3

Let $$a > 0, b > 0$$    and $$c > 0$$ . Then the roots of the equation $$a{x^2} + bx + c = 0$$

A. are real and negative
B. have negative real parts
C. both (A) and (B)
D. none of these
Releted Question 4

Both the roots of the equation $$\left( {x - b} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - b} \right) = 0$$           are always

A. positive
B. real
C. negative
D. none of these.

Practice More Releted MCQ Question on
Quadratic Equation


Practice More MCQ Question on Maths Section