Question

If $$4\,{\sin ^2}x - 8\sin x + 3 \leqslant 0,0 \leqslant x \leqslant 2\pi ,$$        then the solution set for $$x$$ is

A. $$\left[ {0,\frac{\pi }{6}} \right]$$
B. $$\left[ {0,\frac{5\pi }{6}} \right]$$
C. $$\left[ {\frac{{5\pi }}{6},2\pi } \right]$$
D. $$\left[ {\frac{\pi }{6},\frac{{5\pi }}{6}} \right]$$  
Answer :   $$\left[ {\frac{\pi }{6},\frac{{5\pi }}{6}} \right]$$
Solution :
Here, $$\left( {2\sin x - 1} \right)\left( {2\sin x - 3} \right) \leqslant 0.$$      But $$2\sin x - 3$$   is always negative.
Trignometric Equations mcq solution image
$$\therefore \,\,2\sin x - 1 \geqslant 0,\,{\text{i}}{\text{.e}}{\text{.,}}\sin x \geqslant \frac{1}{2}.$$
∴ from the figure, $$\frac{\pi }{6} \leqslant x \leqslant \frac{{5\pi }}{6}.$$

Releted MCQ Question on
Trigonometry >> Trignometric Equations

Releted Question 1

The equation $$2\,{\cos ^2}\frac{x}{2}{\sin ^2}x = {x^2} + {x^{ - 2}};0 < x \leqslant \frac{\pi }{2}$$        has

A. no real solution
B. one real solution
C. more than one solution
D. none of these
Releted Question 2

The general solution of the trigonometric equation $$\sin x + \cos x = 1$$    is given by:

A. $$x = 2n\pi ;\,\,n = 0,\,\, \pm 1,\,\, \pm 2\,.....$$
B. $$x = 2n\pi + \frac{\pi }{2};\,\,n = 0,\,\, \pm 1,\,\, \pm 2\,.....$$
C. $$x = n\pi + {\left( { - 1} \right)^n}\,\,\frac{\pi }{4} - \frac{\pi }{4}$$
D. none of these
Releted Question 3

The general solution of $$\sin \,x - 3\,\sin \,2x\, + \sin \,3x\, = \cos x - 3\,\cos \,\,2x + \cos \,3x$$           is

A. $$n\pi + \frac{\pi }{8}$$
B. $$\frac{{n\pi }}{2} + \frac{\pi }{8}$$
C. $${\left( { - 1} \right)^n}\frac{{n\pi }}{2} + \frac{\pi }{8}$$
D. $$2n\pi + {\cos ^{ - 1}}\frac{3}{2}$$
Releted Question 4

Number of solutions of the equation $$\tan x + \sec x = 2\cos x$$     lying in the interval $$\left[ {0,2\pi } \right]$$  is:

A. 0
B. 1
C. 2
D. 3

Practice More Releted MCQ Question on
Trignometric Equations


Practice More MCQ Question on Maths Section