Question

If $$2{\tan ^{ - 1}}x + {\sin ^{ - 1}}\frac{{2x}}{{1 + {x^2}}}$$     is independent of $$x$$ then

A. $$x \in \left[ {1, + \infty } \right)$$  
B. $$x \in \left[ { - 1,1} \right]$$
C. $$x \in \left( { - \infty , - 1} \right]$$
D. None of these
Answer :   $$x \in \left[ {1, + \infty } \right)$$
Solution :
Let $$x = \tan \theta .$$   Then $${\sin ^{ - 1}}\frac{{2x}}{{1 + {x^2}}} = {\sin ^{ - 1}}\frac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }} = {\sin ^{ - 1}}\left( {\sin 2\theta } \right).$$
$$\eqalign{ & \therefore \,\,2{\tan ^{ - 1}}x + {\sin ^{ - 1}}\frac{{2x}}{{1 + {x^2}}} = 2\theta + {\sin ^{ - 1}}\left( {\sin 2\theta } \right). \cr & {\text{If }} - \frac{\pi }{2} \leqslant 2\theta \leqslant \frac{\pi }{2},2{\tan ^{ - 1}}x + {\sin ^{ - 1}}\frac{{2x}}{{1 + {x^2}}} = 2\theta + 2\theta = 4{\tan ^{ - 1}}x \ne {\text{independent of }}x. \cr & {\text{If }} - \frac{\pi }{2} \leqslant \pi - 2\theta \leqslant \frac{\pi }{2},2{\tan ^{ - 1}}x + {\sin ^{ - 1}}\frac{{2x}}{{1 + {x^2}}} = 2\theta + {\sin ^{ - 1}}\left\{ {\sin \left( {\pi - 2\theta } \right)} \right\} = 2\theta + \pi - 2\theta = \pi = {\text{independent of }}x. \cr} $$
$$\therefore \,\,\theta \notin \left[ { - \frac{\pi }{4},\frac{\pi }{4}} \right]\,{\text{but }}\theta \in \left[ {\frac{\pi }{4},\frac{{3\pi }}{4}} \right]$$      and from the principal value of $${\tan ^1}x,\theta \in \left( { - \frac{\pi }{2},\frac{\pi }{2}} \right).\,{\text{Hence, }}\theta \in \left( {\frac{\pi }{4},\frac{\pi }{2}} \right).$$
$$\eqalign{ & \therefore \,\,\theta \in \left( {\frac{\pi }{4},\frac{\pi }{2}} \right) \cr & \Rightarrow \,\,{\tan ^{ - 1}}x + {\sin ^{ - 1}}\frac{{2x}}{{1 + {x^2}}} = \pi . \cr & {\text{Also at, }}\theta = \frac{\pi }{4},2{\tan ^{ - 1}}x + {\sin ^{ - 1}}\frac{{2x}}{{1 + {x^2}}} = 2 \cdot \frac{\pi }{4} + {\sin ^{ - 1}}1 = \frac{\pi }{2} + \frac{\pi }{2} = \pi . \cr} $$
∴ the given function $$ = \pi = $$  constant if $$\theta \in \left[ {\frac{\pi }{4},\frac{\pi }{2}} \right),\,{\text{i}}{\text{.e}}{\text{., }}x \in \left[ {1, + \infty } \right).$$

Releted MCQ Question on
Trigonometry >> Inverse Trigonometry Function

Releted Question 1

The value of $$\tan \left[ {{{\cos }^{ - 1}}\left( {\frac{4}{5}} \right) + {{\tan }^{ - 1}}\left( {\frac{2}{3}} \right)} \right]$$      is

A. $$\frac{6}{{17}}$$
B. $$\frac{7}{{16}}$$
C. $$\frac{16}{{7}}$$
D. none
Releted Question 2

If we consider only the principle values of the inverse trigonometric functions then the value of $$\tan \left( {{{\cos }^{ - 1}}\frac{1}{{5\sqrt 2 }} - {{\sin }^{ - 1}}\frac{4}{{\sqrt {17} }}} \right)$$      is

A. $$\frac{{\sqrt {29} }}{3}$$
B. $$\frac{{29}}{3}$$
C. $$\frac{{\sqrt {3}}}{29}$$
D. $$\frac{{3}}{29}$$
Releted Question 3

The number of real solutions of $${\tan ^{ - 1}}\sqrt {x\left( {x + 1} \right)} + {\sin ^{ - 1}}\sqrt {{x^2} + x + 1} = \frac{\pi }{2}$$         is

A. zero
B. one
C. two
D. infinite
Releted Question 4

If $${\sin ^{ - 1}}\left( {x - \frac{{{x^2}}}{2} + \frac{{{x^3}}}{4} - .....} \right) + {\cos ^{ - 1}}\left( {{x^2} - \frac{{{x^4}}}{2} + \frac{{{x^6}}}{4} - .....} \right) = \frac{\pi }{2}$$             for $$0 < \left| x \right| < \sqrt 2 ,$$   then $$x$$ equals

A. $$ \frac{1}{2}$$
B. 1
C. $$ - \frac{1}{2}$$
D. $$- 1$$

Practice More Releted MCQ Question on
Inverse Trigonometry Function


Practice More MCQ Question on Maths Section