Question

If \[{\left[ {\begin{array}{*{20}{c}} 1&x&1 \end{array}} \right]_{1 \times 3}}{\left[ {\begin{array}{*{20}{c}} 1&3&2\\ 2&5&1\\ {15}&3&2 \end{array}} \right]_{3 \times 3}}{\left[ {\begin{array}{*{20}{c}} 1\\ 2\\ x \end{array}} \right]_{3 \times 1}} = 0,\]         then $$x$$ is

A. $$2$$
B. $$- 2$$  
C. $$14$$
D. None of these
Answer :   $$- 2$$
Solution :
\[\begin{array}{l} {\rm{Given,\, }}{\left[ {\begin{array}{*{20}{c}} 1&x&1 \end{array}} \right]_{1 \times 3}}{\left[ {\begin{array}{*{20}{c}} 1&3&2\\ 2&5&1\\ {15}&3&2 \end{array}} \right]_{3 \times 3}}{\left[ {\begin{array}{*{20}{c}} 1\\ 2\\ x \end{array}} \right]_{3 \times 1}} = 0\\ \Rightarrow \left[ {1 + 2x + 15\,\,\,3 + 5x + 3\,\,\,2 + x + 2} \right]\left[ \begin{array}{l} 1\\ 2\\ x \end{array} \right] = 0\\ \Rightarrow \left[ {16 + 2x + 15\,\,\,3 + 5x + 3\,\,\,2 + x + 2} \right]\left[ \begin{array}{l} 1\\ 2\\ x \end{array} \right] = 0\\ \Rightarrow \left[ {\left( {16 + 2x} \right) \cdot 1 + \left( {6 + 5x} \right) \cdot 2 + \left( {4 + x} \right) \cdot x} \right] = 0\\ \Rightarrow \left( {16 + 2x} \right) + \left( {12 + 10x} \right) + \left( {4x + {x^2}} \right) = 0\\ \Rightarrow {x^2} + 16x + 28 = 0\\ \Rightarrow \left( {x + 14} \right)\left( {x + 2} \right) = 0\\ \Rightarrow x + 14 = 0{\rm{ \,\,or\,\, }}x + 2 = 0\\ {\rm{Hence, }}x = - 14{\rm{ }}\,{\rm{\,\,or\,\, }}x = - 2 \end{array}\]

Releted MCQ Question on
Algebra >> Matrices and Determinants

Releted Question 1

Consider the set $$A$$ of all determinants of order 3 with entries 0 or 1 only. Let $$B$$  be the subset of $$A$$ consisting of all determinants with value 1. Let $$C$$  be the subset of $$A$$ consisting of all determinants with value $$- 1.$$ Then

A. $$C$$ is empty
B. $$B$$  has as many elements as $$C$$
C. $$A = B \cup C$$
D. $$B$$  has twice as many elements as elements as $$C$$
Releted Question 2

If $$\omega \left( { \ne 1} \right)$$  is a cube root of unity, then
\[\left| {\begin{array}{*{20}{c}} 1&{1 + i + {\omega ^2}}&{{\omega ^2}}\\ {1 - i}&{ - 1}&{{\omega ^2} - 1}\\ { - i}&{ - i + \omega - 1}&{ - 1} \end{array}} \right|=\]

A. 0
B. 1
C. $$i$$
D. $$\omega $$
Releted Question 3

Let $$a, b, c$$  be the real numbers. Then following system of equations in $$x, y$$  and $$z$$
$$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} - \frac{{{z^2}}}{{{c^2}}} = 1,$$    $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1,$$    $$ - \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1$$     has

A. no solution
B. unique solution
C. infinitely many solutions
D. finitely many solutions
Releted Question 4

If $$A$$ and $$B$$ are square matrices of equal degree, then which one is correct among the followings?

A. $$A + B = B + A$$
B. $$A + B = A - B$$
C. $$A - B = B - A$$
D. $$AB=BA$$

Practice More Releted MCQ Question on
Matrices and Determinants


Practice More MCQ Question on Maths Section