If $$200\,MeV$$ energy is released in the fission of a single $${U^{235}}$$ nucleus, the number of fusions required per second to produce 1 kilowatt power shall be (Given $$1\,eV = 1.6 \times {10^{ - 19}}J$$ )
In the nuclear fusion reaction
$$_1^2H + _1^3H \to _2^4He + n$$
given that the repulsive potential energy between the two
nuclei is $$ \sim 7.7 \times {10^{ - 14}}J,$$ the temperature at which the gases must be heated to initiate the reaction is nearly
[Boltzmann’s Constant $$k = 1.38 \times {10^{ - 23}}J/K$$ ]
The binding energy per nucleon of deuteron $$\left( {_1^2H} \right)$$ and helium nucleus $$\left( {_2^4He} \right)$$ is $$1.1\,MeV$$ and $$7\,MeV$$ respectively. If two deuteron nuclei react to form a single helium nucleus, then the energy released is