Question

If $$1 + {x^2} = \sqrt {3x} $$    then$$\sum\limits_{n = 1}^{24} {{{\left( {{x^n} - \frac{1}{{{x^n}}}} \right)}^2}} $$    is equal to

A. $$48$$
B. $$- 48$$
C. $$ \pm 48\left( {\omega - {\omega ^2}} \right)$$
D. None of these  
Answer :   None of these
Solution :
$$\eqalign{ & 1 - \sqrt 3 x + {x^2} = 0 \cr & x = \frac{{\sqrt 3 \pm i}}{2} \cr & x = \frac{{\sqrt 3 + i}}{2} = - i\overline w {\text{ and }}\overline x = \frac{{\sqrt 3 - i}}{2} = iw \cr & {\text{Now, }}{\left( {{x^n} - \frac{1}{{{x^n}}}} \right)^2} \cr & = {x^{2n}} + {\overline w ^{2n}} - 2 \cr & = - {\overline w ^{2n}} - {w^{2n}} - 2 \cr & = - 2 - \left[ {{{\overline w }^{2n}} + {w^{2n}}} \right] \cr & {\text{Now, }}\overline w = {w^2}{\text{ and }}1 + w + {w^2} = 0 \cr & {\text{Hence,}} \cr & - 2 - \left[ {{{\overline w }^{2n}} + {w^{2n}}} \right] \cr & = - 2 - \left[ {{w^{4n}} + {w^{2n}}} \right] \cr & = - 2 - \left[ { - 1} \right] \cr & = - 2 + 1 \cr & = - 1 \cr & {\text{Hence, }}\sum\limits_{n = 1}^{24} {{{\left( {{x^n} - \frac{1}{{{x^n}}}} \right)}^2}} = - 24 \cr} $$

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section