Question

If $$\left( {1 + 3 + 5 + ..... + p} \right) + \left( {1 + 3 + 5 + ..... + q} \right) = \left( {1 + 3 + 5 + ..... + r} \right)$$              where each set of parentheses contains the sum of consecutive odd integers as shown, what is the smallest possible value of $$\left( {p + q + r} \right){\text{where }}p > 6?$$

A. 12
B. 21  
C. 45
D. 54
Answer :   21
Solution :
Since $$n^{th}$$ term of A.P. $$ = a + \left( {n - 1} \right)d$$
$$\therefore p = 1 + \left( {n - 1} \right)2$$
( ∵ First term $$= a = 1$$  and common difference $$= d = 2$$  )
$$\eqalign{ & \Rightarrow n = \frac{{p + 1}}{2} \cr & \therefore \left( {1 + 3 + 5 + ..... + p} \right) + \left( {1 + 3 + 5 + ..... + q} \right) = \left( {1 + 3 + 5 + ..... + r} \right) \cr & \Rightarrow \frac{{\frac{{p + 1}}{2}}}{2}\left[ {2 \times 1 + \left( {\frac{{p + 1}}{2} - 1} \right)2} \right] + \frac{{\left( {\frac{{q + 1}}{2}} \right)}}{2}\left[ {2 \times 1 + \left( {\frac{{q + 1}}{2} - 1} \right)2} \right] \cr & = \frac{{r + 1}}{4}\left[ {2 \times 1 + \left( {\frac{{r + 1}}{2} - 1} \right)2} \right] \cr & \Rightarrow \frac{{p + 1}}{4}\left[ {2 + \left( {p - 1} \right)} \right] + \frac{{q + 1}}{4}\left[ {2 + \left( {q - 1} \right)} \right] \cr & = \frac{{r + 1}}{4}\left[ {2 + r - 1} \right] \cr & \Rightarrow {\left( {p + 1} \right)^2} + {\left( {q + 1} \right)^2} = {\left( {r + 1} \right)^2} \cr} $$
This is the possible only when $$p = 7, q = 5, r = 9$$
$$ \therefore p + q + r = 7 + 5 + 9 = 21$$

Releted MCQ Question on
Algebra >> Sequences and Series

Releted Question 1

If $$x, y$$ and $$z$$ are $${p^{{\text{th}}}},{q^{{\text{th}}}}\,{\text{and }}{r^{{\text{th}}}}$$   terms respectively of an A.P. and also of a G.P., then $${x^{y - z}}{y^{z - x}}{z^{x - y}}$$   is equal to:

A. $$xyz$$
B. 0
C. 1
D. None of these
Releted Question 2

The third term of a geometric progression is 4. The product of the first five terms is

A. $${4^3}$$
B. $${4^5}$$
C. $${4^4}$$
D. none of these
Releted Question 3

The rational number, which equals the number $$2.\overline {357} $$   with recurring decimal is

A. $$\frac{{2355}}{{1001}}$$
B. $$\frac{{2379}}{{997}}$$
C. $$\frac{{2355}}{{999}}$$
D. none of these
Releted Question 4

If $$a, b, c$$  are in G.P., then the equations $$a{x^2} + 2bx + c = 0$$     and $$d{x^2} + 2ex + f = 0$$     have a common root if $$\frac{d}{a},\frac{e}{b},\frac{f}{c}$$   are in-

A. A.P.
B. G.P.
C. H.P.
D. none of these

Practice More Releted MCQ Question on
Sequences and Series


Practice More MCQ Question on Maths Section