Question

If $$0 < x < \pi $$   and $$\cos x + \sin x = \frac{1}{2},$$    then $$\tan x$$  is

A. $$\frac{{\left( {1 - \sqrt 7 } \right)}}{4}$$
B. $$\frac{{\left( {4 - \sqrt 7 } \right)}}{3}$$
C. $$ - \frac{{\left( {4 + \sqrt 7 } \right)}}{3}$$  
D. $$\frac{{\left( {1 + \sqrt 7 } \right)}}{4}$$
Answer :   $$ - \frac{{\left( {4 + \sqrt 7 } \right)}}{3}$$
Solution :
Given, $$\cos x + \sin x = \frac{1}{2}$$
$$ \Rightarrow 1 + \sin 2x = \frac{1}{4}$$
$$ \Rightarrow \sin 2x = - \frac{3}{4},$$    so $$x$$ is obtuse and $$\frac{{2\tan x}}{{1 + {{\tan }^2}x}} = - \frac{3}{4}$$
$$\eqalign{ & \Rightarrow 3\tan ^2 x + 8\tan x + 3 = 0 \cr & \therefore \tan x = \frac{{ - 8 \pm \sqrt {64 - 36} }}{6} = - \frac{{ - 4 \pm \sqrt 7 }}{3} \cr & {\text{as }}\tan x < 0 \cr & \therefore \tan x = \frac{{ - 4 - \sqrt 7 }}{3} \cr} $$

Releted MCQ Question on
Trigonometry >> Trigonometric Ratio and Identities

Releted Question 1

If $$\tan \theta = - \frac{4}{3},$$   then $$\sin \theta $$  is

A. $$ - \frac{4}{5}{\text{ but not }}\frac{4}{5}$$
B. $$ - \frac{4}{5}{\text{ or }}\frac{4}{5}$$
C. $$ \frac{4}{5}{\text{ but not }} - \frac{4}{5}$$
D. None of these
Releted Question 2

If $$\alpha + \beta + \gamma = 2\pi ,$$    then

A. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
B. $$\tan \frac{\alpha }{2}\tan \frac{\beta }{2} + \tan \frac{\beta }{2}\tan \frac{\gamma }{2} + \tan \frac{\gamma }{2}\tan \frac{\alpha }{2} = 1$$
C. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = - \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
D. None of these
Releted Question 3

Given $$A = {\sin ^2}\theta + {\cos ^4}\theta $$    then for all real values of $$\theta $$

A. $$1 \leqslant A \leqslant 2$$
B. $$\frac{3}{4} \leqslant A \leqslant 1$$
C. $$\frac{13}{16} \leqslant A \leqslant 1$$
D. $$\frac{3}{4} \leqslant A \leqslant \frac{{13}}{{16}}$$
Releted Question 4

The value of the expression $$\sqrt 3 \,{\text{cosec}}\,{\text{2}}{{\text{0}}^ \circ } - \sec {20^ \circ }$$     is equal to

A. 2
B. $$\frac{{2\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$
C. 4
D. $$\frac{{4\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$

Practice More Releted MCQ Question on
Trigonometric Ratio and Identities


Practice More MCQ Question on Maths Section