Question

If $$0 \leqslant x \leqslant 2\pi ,$$   then number of roots of equation $${e^{\sin x}} - {e^{ - \sin x}} = 4{\text{ is}}$$

A. 0  
B. 1
C. 2
D. 4
Answer :   0
Solution :
The given equation can be written as
$$\eqalign{ & {e^{\sin x}} = 4 + \frac{1}{{{e^{\sin x}}}}\,\,\,.....\left( 1 \right) \cr & {\text{Now, }} - 1 \leqslant \sin x \leqslant 1\,{\text{and }}e < 3 \cr & \Rightarrow {e^{\sin x}} < 3 \cr & \Rightarrow {\text{Again as we always have }}\frac{1}{{{e^{\sin x}}}} > 0 \cr & \therefore 4 + \frac{1}{{{e^{\sin x}}}} > 4 \cr} $$
Thus the L.H.S. of $$\left( 1 \right) < 3$$  and R.H.S. of $$\left( 1 \right) > 4.$$
Hence there is no real values of $$x$$ which satisfy $$\left( 1 \right).$$
It follows that the given equation has no real solution.

Releted MCQ Question on
Trigonometry >> Trignometric Equations

Releted Question 1

The equation $$2\,{\cos ^2}\frac{x}{2}{\sin ^2}x = {x^2} + {x^{ - 2}};0 < x \leqslant \frac{\pi }{2}$$        has

A. no real solution
B. one real solution
C. more than one solution
D. none of these
Releted Question 2

The general solution of the trigonometric equation $$\sin x + \cos x = 1$$    is given by:

A. $$x = 2n\pi ;\,\,n = 0,\,\, \pm 1,\,\, \pm 2\,.....$$
B. $$x = 2n\pi + \frac{\pi }{2};\,\,n = 0,\,\, \pm 1,\,\, \pm 2\,.....$$
C. $$x = n\pi + {\left( { - 1} \right)^n}\,\,\frac{\pi }{4} - \frac{\pi }{4}$$
D. none of these
Releted Question 3

The general solution of $$\sin \,x - 3\,\sin \,2x\, + \sin \,3x\, = \cos x - 3\,\cos \,\,2x + \cos \,3x$$           is

A. $$n\pi + \frac{\pi }{8}$$
B. $$\frac{{n\pi }}{2} + \frac{\pi }{8}$$
C. $${\left( { - 1} \right)^n}\frac{{n\pi }}{2} + \frac{\pi }{8}$$
D. $$2n\pi + {\cos ^{ - 1}}\frac{3}{2}$$
Releted Question 4

Number of solutions of the equation $$\tan x + \sec x = 2\cos x$$     lying in the interval $$\left[ {0,2\pi } \right]$$  is:

A. 0
B. 1
C. 2
D. 3

Practice More Releted MCQ Question on
Trignometric Equations


Practice More MCQ Question on Maths Section