Question
How many different nine digit numbers can be formed from the number 223355888 by rearranging its digits so that the odd digits occupy even positions?
A.
16
B.
36
C.
60
D.
180
Answer :
60
Solution :
$$X - X - X - X - X.$$ The four digits 3, 3, 5, 5 can be arranged at $$(-)$$ places in $$\frac{{4!}}{{2!2!}} = 6\,\,{\text{ways}}{\text{.}}$$
The five digits 2, 2, 8, 8, 8 can be arranged at $$(X)$$ places in $$\frac{{5!}}{{2!3!}} = 10\,\,{\text{ways}}{\text{.}}$$
Total no. of arrangements $${\text{ = }}\,{\text{6}} \times {\text{10}}\,{\text{ = }}\,{\text{60}}\,\,{\text{ways}}{\text{.}}$$