Given that :
(i) $${\Delta _f}{H^ \circ }\,{\text{of}}\,{N_2}O\,\,{\text{is}}\,\,82\,kJ\,mo{l^{ - 1}}$$
(ii) Bond energies of $$N \equiv N,\,N = N,O = O$$ and $$N=O$$ are $$946,418,498$$ and $$607\,kJ\,mo{l^{ - 1}}$$ respectively,
The resonance energy of $${N_2}O$$ is :
A.
$$ - 88 \, kJ$$
B.
$$ - 66 \, kJ$$
C.
$$ - 62 \, kJ$$
D.
$$ - 44 \, kJ$$
Answer :
$$ - 88 \, kJ$$
Solution :
\[\begin{align}
& {{N}_{2}}\left( g \right)+\frac{1}{2}{{O}_{2}}\to {{N}_{2}}O\left( g \right) \\
& N\equiv N\left( g \right)+\frac{1}{2}\left( O=O \right)\to \underset{\scriptscriptstyle\centerdot\centerdot}{\ddot{N}}=\overset{+}{\mathop{N}}\,=\underset{\scriptscriptstyle\centerdot\centerdot}{\ddot{O}}\left( g \right) \\
\end{align}\]
$$\Delta {H_f}^ \circ = $$ [ Energy required for breaking of bonds ] – [ Energy released for forming of bonds ]
$$\eqalign{
& = (\Delta {H_{N \equiv N}} + \frac{1}{2}\Delta {H_{O = O}} - (\Delta {H_{N = N}} + \Delta {H_{N = O}}) \cr
& = (946 + \frac{1}{2} \times 498) - (418 + 607) \cr
& = 170\,kJ\,mo{l^{ - 1}} \cr
& {\text{Resonance energy}} = 82 - 170 \cr
& = - 88\,kJ\,mo{l^{ - 1}} \cr} $$
Releted MCQ Question on Physical Chemistry >> Chemical Thermodynamics
Releted Question 1
The difference between heats of reaction at constant pressure and constant volume for the reaction : $$2{C_6}{H_6}\left( l \right) + 15{O_{2\left( g \right)}} \to $$ $$12C{O_2}\left( g \right) + 6{H_2}O\left( l \right)$$ at $${25^ \circ }C$$ in $$kJ$$ is
$${\text{The}}\,\Delta H_f^0\,{\text{for}}\,C{O_2}\left( g \right),\,CO\left( g \right)\,$$ and $${H_2}O\left( g \right)$$ are $$-393.5,$$ $$-110.5$$ and $$ - 241.8\,kJ\,mo{l^{ - 1}}$$ respectively. The standard enthalpy change ( in $$kJ$$ ) for the reaction $$C{O_2}\left( g \right) + {H_2}\left( g \right) \to CO\left( g \right) + {H_2}O\left( g \right)\,{\text{is}}$$