Question

Given positive integers $$r > 1, n > 2$$   and that the co - efficient of $${\left( {3r} \right)^{th}}\,{\text{and }}{\left( {r + 2} \right)^{th}}$$    terms in the binomial expansion of $${\left( {1 + x} \right)^{2n}}$$  are equal. Then

A. $$n = 2r$$  
B. $$n = 2r + 1$$
C. $$n = 3r$$
D. none of these
Answer :   $$n = 2r$$
Solution :
Given that $$r$$ and $$n$$ are +ve integers such that $$r > 1, n > 2$$
Also in the expansion of $${\left( {1 + x} \right)^{2n}}$$
co - eff. of $${\left( {3r} \right)^{th}}$$  term = co - eff. of $${\left( {r + 2} \right)^{th}}$$  term
$$\eqalign{ & \Rightarrow \,{\,^{2n}}{C_{3r - 1}} = {\,^{2n}}{C_{r + 1}} \cr & \Rightarrow \,\,3r - 1 = r + 1\,\,{\text{or }}3r - 1 + r + 1 = 2n \cr & \Rightarrow \,\,r = 1\,\,{\text{or }}2r = n \cr & {\text{But }}\,r > 1 \cr & \therefore \,\,n = 2r \cr} $$

Releted MCQ Question on
Algebra >> Binomial Theorem

Releted Question 1

Given positive integers $$r > 1, n > 2$$   and that the co - efficient of $${\left( {3r} \right)^{th}}\,{\text{and }}{\left( {r + 2} \right)^{th}}$$    terms in the binomial expansion of $${\left( {1 + x} \right)^{2n}}$$  are equal. Then

A. $$n = 2r$$
B. $$n = 2r + 1$$
C. $$n = 3r$$
D. none of these
Releted Question 2

The co-efficient of $${x^4}$$ in $${\left( {\frac{x}{2} - \frac{3}{{{x^2}}}} \right)^{10}}$$   is

A. $$\frac{{405}}{{256}}$$
B. $$\frac{{504}}{{259}}$$
C. $$\frac{{450}}{{263}}$$
D. none of these
Releted Question 3

The expression $${\left( {x + {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5} + {\left( {x - {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5}$$       is a polynomial of degree

A. 5
B. 6
C. 7
D. 8
Releted Question 4

If in the expansion of $${\left( {1 + x} \right)^m}{\left( {1 - x} \right)^n},$$    the co-efficients of $$x$$ and $${x^2}$$ are $$3$$ and $$- 6\,$$ respectively, then $$m$$ is

A. 6
B. 9
C. 12
D. 24

Practice More Releted MCQ Question on
Binomial Theorem


Practice More MCQ Question on Maths Section