Solution :
$$N{i^{ + 2}} + 4C{l^ - } \to \mathop {{{\left[ {NiC{l_4}} \right]}^{2 - }}}\limits_{s{p^3}} $$
$${\left[ {NiC{l_4}} \right]^{2 - }} = 3{d^8}$$ configuration with nickel in $$+ 2$$ oxidation state, $$C{l^ - }$$ being weak field ligand does not compel for pairing of electrons.
So,
$${\left[ {NiC{l_4}} \right]^{2 - }}$$
.PNG)
Hence, complex has tetrahedral geometry
.PNG)
$$N{i^{ + 2}} + 4C{N^ - } \to {\left[ {Ni{{\left( {CN} \right)}_4}} \right]^{2 - }}$$
$${\left[ {Ni{{\left( {CN} \right)}_4}} \right]^{2 - }} = 3{d^8}$$ configuration with nickel in $$ + \,\,\,2$$ oxidation state, $$C{N^ - }$$ being strong field ligand compels for pairing of electrons.
So,
$${\left[ {Ni{{\left( {CN} \right)}_4}} \right]^{ - 2}}$$
.PNG)
Hence, complex has square planar geometry.
.PNG)
$$N{i^{ + 2}} + 6{H_2}O \to {\left[ {Ni{{\left( {{H_2}O} \right)}_6}} \right]^{2 + }}$$
$$\left[ {Ni{{\left( {{H_2}O} \right)}_6}} \right] = 3{d^8}$$ configuration with nickel in $$ + 2$$ oxidation state. As with $$3{d^8}$$ configuration two $$d - $$ orbitals are not available for $${d^2}s{p^3}$$ hybridisation. So, hybridisation of $$Ni\left( {{\text{II}}} \right)$$ is $$s{p^3}{d^2}$$ and $$Ni\left( {{\text{II}}} \right)$$ with six co-ordination will have octahedral geometry.
.PNG)
Note : With water as ligand, $$Ni\left( {{\text{II}}} \right)$$ forms octahedral complexes.