Solution :
Let height of the tower be $$h\,m$$ and distance between tower and cliffbe $$x\,m.$$
$$\eqalign{
& \therefore CD = h,BD = x \cr
& {\text{In }}\Delta \,ABD,\tan {45^ \circ } = \frac{{AB}}{{BD}} \cr
& {\text{or }}1 = \frac{{50}}{x} \cr
& x = 50\,\,\,\,.....\left( {\text{i}} \right) \cr} $$

$$\eqalign{
& {\text{In }}\Delta \,AEC \cr
& \tan {30^ \circ } = \frac{{AE}}{{EC}} = \frac{{AB - EB}}{{EC}} = \frac{{AB - DC}}{{BD}}\left( {\because EB = DC,EC = BD} \right) \cr
& \frac{1}{{\sqrt 3 }} = \frac{{50 - h}}{x}{\text{ or }}x = 50\sqrt 3 - h\sqrt 3 \cr
& {\text{or }}50 = 50\sqrt 3 - h\sqrt 3 {\text{ or }}h\sqrt 3 = 50\sqrt 3 - 50 \cr
& {\text{or }}h = \frac{{50\left( {\sqrt 3 - 1} \right)}}{{\sqrt 3 }} = 50\left( {1 - \frac{1}{{\sqrt 3 }}} \right) \cr
& \therefore h = 50\left( {1 - \frac{{\sqrt 3 }}{3}} \right) \cr} $$