Question

From the top of a cliff $$50\,m$$  high, the angles of depression of the top and bottom of a tower are observed to be $${30^ \circ }$$ and $${45^ \circ }.$$ The height of tower is

A. $$50\,m$$
B. $$50\sqrt 3 \,m$$
C. $$50\left( {\sqrt 3 - 1} \right)m$$
D. $$50\left( {1 - \frac{{\sqrt 3 }}{3}} \right)m$$  
Answer :   $$50\left( {1 - \frac{{\sqrt 3 }}{3}} \right)m$$
Solution :
Let height of the tower be $$h\,m$$  and distance between tower and cliffbe $$x\,m.$$
$$\eqalign{ & \therefore CD = h,BD = x \cr & {\text{In }}\Delta \,ABD,\tan {45^ \circ } = \frac{{AB}}{{BD}} \cr & {\text{or }}1 = \frac{{50}}{x} \cr & x = 50\,\,\,\,.....\left( {\text{i}} \right) \cr} $$
Properties and Solutons of Triangle mcq solution image
$$\eqalign{ & {\text{In }}\Delta \,AEC \cr & \tan {30^ \circ } = \frac{{AE}}{{EC}} = \frac{{AB - EB}}{{EC}} = \frac{{AB - DC}}{{BD}}\left( {\because EB = DC,EC = BD} \right) \cr & \frac{1}{{\sqrt 3 }} = \frac{{50 - h}}{x}{\text{ or }}x = 50\sqrt 3 - h\sqrt 3 \cr & {\text{or }}50 = 50\sqrt 3 - h\sqrt 3 {\text{ or }}h\sqrt 3 = 50\sqrt 3 - 50 \cr & {\text{or }}h = \frac{{50\left( {\sqrt 3 - 1} \right)}}{{\sqrt 3 }} = 50\left( {1 - \frac{1}{{\sqrt 3 }}} \right) \cr & \therefore h = 50\left( {1 - \frac{{\sqrt 3 }}{3}} \right) \cr} $$

Releted MCQ Question on
Trigonometry >> Properties and Solutons of Triangle

Releted Question 1

If the bisector of the angle $$P$$ of a triangle $$PQR$$  meets $$QR$$  in $$S,$$ then

A. $$QS = SR$$
B. $$QS : SR = PR : PQ$$
C. $$QS : SR = PQ : PR$$
D. None of these
Releted Question 2

From the top of a light-house 60 metres high with its base at the sea-level, the angle of depression of a boat is 15°. The distance of the boat from the foot of the light house is

A. $$\left( {\frac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}} \right)60\,{\text{metres}}$$
B. $$\left( {\frac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}}} \right)60\,{\text{metres}}$$
C. $${\left( {\frac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}}} \right)^2}{\text{metres}}$$
D. none of these
Releted Question 3

In a triangle $$ABC,$$  angle $$A$$ is greater than angle $$B.$$ If the measures of angles $$A$$ and $$B$$ satisfy the equation $$3\sin x - 4{\sin ^3}x - k = 0, 0 < k < 1,$$       then the measure of angle $$C$$ is

A. $$\frac{\pi }{3}$$
B. $$\frac{\pi }{2}$$
C. $$\frac{2\pi }{3}$$
D. $$\frac{5\pi }{6}$$
Releted Question 4

In a triangle $$ABC,$$  $$\angle B = \frac{\pi }{3}{\text{ and }}\angle C = \frac{\pi }{4}.$$     Let $$D$$ divide $$BC$$  internally in the ratio 1 : 3 then $$\frac{{\sin \angle BAD}}{{\sin \angle CAD}}$$   is equal to

A. $$\frac{1}{{\sqrt 6 }}$$
B. $${\frac{1}{3}}$$
C. $$\frac{1}{{\sqrt 3 }}$$
D. $$\sqrt {\frac{2}{3}} $$

Practice More Releted MCQ Question on
Properties and Solutons of Triangle


Practice More MCQ Question on Maths Section