Question

Four distinct points $$\left( {2k,\,3k} \right),\,\left( {1,\,0} \right),\,\left( {0,\,1} \right)$$     and $$\left( {0,\,0} \right)$$  lie on a circle for :

A. only one value of $$k$$  
B. $$0 < k < 1$$
C. $$k < 0$$
D. all integral values of $$k$$
Answer :   only one value of $$k$$
Solution :
The equation of the circle through $$\left( {1,\,0} \right),\,\left( {0,\,1} \right)$$   and $$\left( {0,\,0} \right)$$  is $${x^2} + {y^2} - x - y = 0$$
It passes through $$\left( {2k,\,3k} \right)$$
$$\eqalign{ & {\text{So, }}4{k^2} + 9{k^2} - 2k - 3k = 0 \cr & \Rightarrow 13{k^2} - 5k = 0 \cr & \Rightarrow k\left( {13k - 5} \right) = 0 \cr & \Rightarrow k = 0{\text{ or }}k = \frac{5}{{13}} \cr} $$
But $$k \ne 0$$   [$$\because $$ all the four points are distinct]
$$\therefore k = \frac{5}{{13}}$$

Releted MCQ Question on
Geometry >> Circle

Releted Question 1

A square is inscribed in the circle $${x^2} + {y^2} - 2x + 4y + 3 = 0.$$      Its sides are parallel to the coordinate axes. The one vertex of the square is-

A. $$\left( {1 + \sqrt 2 ,\, - 2 } \right)$$
B. $$\left( {1 - \sqrt 2 ,\, - 2 } \right)$$
C. $$\left( {1 - 2 ,\, + \sqrt 2 } \right)$$
D. none of these
Releted Question 2

Two circles $${x^2} + {y^2} = 6$$    and $${x^2} + {y^2} - 6x + 8 = 0$$     are given. Then the equation of the circle through their points of intersection and the point $$\left( {1,\,1} \right)$$  is-

A. $${x^2} + {y^2} - 6x + 4 = 0$$
B. $${x^2} + {y^2} - 3x + 1 = 0$$
C. $${x^2} + {y^2} - 4y + 2 = 0$$
D. none of these
Releted Question 3

The centre of the circle passing through the point (0, 1) and touching the curve $$y = {x^2}$$   at $$\left( {2,\,4} \right)$$  is-

A. $$\left( {\frac{{ - 16}}{5},\,\frac{{27}}{{10}}} \right)$$
B. $$\left( {\frac{{ - 16}}{7},\,\frac{{53}}{{10}}} \right)$$
C. $$\left( {\frac{{ - 16}}{5},\,\frac{{53}}{{10}}} \right)$$
D. none of these
Releted Question 4

The equation of the circle passing through $$\left( {1,\,1} \right)$$  and the points of intersection of $${x^2} + {y^2} + 13x - 3y = 0$$      and $$2{x^2} + 2{y^2} + 4x - 7y - 25 = 0$$      is-

A. $$4{x^2} + 4{y^2} - 30x - 10y - 25 = 0$$
B. $$4{x^2} + 4{y^2} + 30x - 13y - 25 = 0$$
C. $$4{x^2} + 4{y^2} - 17x - 10y + 25 = 0$$
D. none of these

Practice More Releted MCQ Question on
Circle


Practice More MCQ Question on Maths Section