Question

For what value of $$\lambda $$ the sum of the squares of the roots of $${x^2} + \left( {2 + \lambda } \right)x - \frac{1}{2}\left( {1 + \lambda } \right) = 0$$       is minimum ?

A. $$\frac{3}{2}$$
B. $$1$$
C. $$\frac{1}{2}$$  
D. $$\frac{11}{4}$$
Answer :   $$\frac{1}{2}$$
Solution :
Given equation is
$$\eqalign{ & {x^2} + \left( {2 + \lambda } \right)x - \frac{1}{2}\left( {1 + \lambda } \right) = 0 \cr & {\text{So, }}\alpha + \beta = - \left( {2 + \lambda } \right) = 0{\text{ and }}\alpha \beta = - \left( {\frac{{1 + \lambda }}{2}} \right) \cr & {\text{Now, }}{\alpha ^2} + {\beta ^2} = {\left( {\alpha + \beta } \right)^2} - 2\alpha \beta \cr & \Rightarrow {\alpha ^2} + {\beta ^2} = {\left[ { - \left( {2 + \lambda } \right)} \right]^2} + 2\frac{{\left( {1 + \lambda } \right)}}{2} \cr & \Rightarrow {\alpha ^2} + {\beta ^2} = {\lambda ^2} + 4 + 4\lambda + 1 + \lambda \cr & = {\lambda ^2} + 5\lambda + 5 \cr} $$
Which is minimum for $$\lambda = \frac{1}{2}.$$

Releted MCQ Question on
Algebra >> Quadratic Equation

Releted Question 1

If $$\ell ,m,n$$  are real, $$\ell \ne m,$$  then the roots by the equation: $$\left( {\ell - m} \right){x^2} - 5\left( {\ell + m} \right)x - 2\left( {\ell - m} \right) = 0$$         are

A. Real and equal
B. Complex
C. Real and unequal
D. None of these
Releted Question 2

The equation $$x + 2y + 2z = 1{\text{ and }}2x + 4y + 4z = 9{\text{ have}}$$

A. Only one solution
B. Only two solutions
C. Infinite number of solutions
D. None of these
Releted Question 3

Let $$a > 0, b > 0$$    and $$c > 0$$ . Then the roots of the equation $$a{x^2} + bx + c = 0$$

A. are real and negative
B. have negative real parts
C. both (A) and (B)
D. none of these
Releted Question 4

Both the roots of the equation $$\left( {x - b} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - b} \right) = 0$$           are always

A. positive
B. real
C. negative
D. none of these.

Practice More Releted MCQ Question on
Quadratic Equation


Practice More MCQ Question on Maths Section