Question
For the three events $$A,\,B$$ and $$C,\,P$$ (exactly one of the events $$A$$ or $$B$$ occurs) $$= P$$ (exactly one of the two events $$B$$ or $$C$$ occurs) $$= P$$ (exactly one of the events $$C$$ or $$A$$ occurs) $$= p$$ and $$P$$ (all the three events occur simultaneously) $$ = {p^2},$$ where $$0 < p < \frac{1}{2}.$$ Then the probability of at least one of the three events $$A,\,B$$ and $$C$$ occurring is :
A.
$$\frac{{3p + 2{p^2}}}{2}$$
B.
$$\frac{{p + 3{p^2}}}{4}$$
C.
$$\frac{{p + 3{p^2}}}{2}$$
D.
$$\frac{{3p + 2{p^2}}}{4}$$
Answer :
$$\frac{{3p + 2{p^2}}}{2}$$
Solution :
$$\eqalign{
& {\text{We know that }}P{\text{ }}\left( {{\text{exactly one of }}A{\text{ or }}B{\text{ occurs}}} \right) \cr
& = P\left( A \right) + P\left( B \right) - 2P\left( {A \cap B} \right) \cr
& \therefore \,P\left( A \right) + P\left( B \right) - 2P\left( {A \cap B} \right) = p......\left( 1 \right) \cr
& {\text{Similarly,}} \cr
& P\left( B \right) + P\left( C \right) - 2P\left( {B \cap C} \right) = p......\left( 2 \right) \cr
& {\text{and }}P\left( C \right) + P\left( A \right) - 2P\left( {C \cap A} \right) = p......\left( 3 \right) \cr
& {\text{Adding equation}}\left( 1 \right),\,\left( 2 \right){\text{ and }}\left( 3 \right){\text{ we get}} \cr
& 2\left[ {P\left( A \right) + P\left( B \right) + P\left( C \right) - P\left( {A \cap B} \right) - P\left( {B \cap C} \right) - P\left( {C \cap A} \right)} \right] = 3p \cr
& \Rightarrow \left[ {P\left( A \right) + P\left( B \right) + P\left( C \right) - P\left( {A \cap B} \right) - P\left( {B \cap C} \right) - P\left( {C \cap A} \right)} \right] = \frac{{3p}}{2}.....\left( 4 \right) \cr
& {\text{It is also given that}} \cr
& P\left( {A \cap B \cap C} \right) = {p^2}......\left( 5 \right) \cr
& {\text{Now,}} \cr
& P\left( {{\text{at least one of }}A,{\text{ }}B{\text{ and }}C} \right) \cr
& = p\left( A \right) + p\left( B \right) + p\left( C \right) - p\left( {A \cap B} \right) - p\left( {B \cap C} \right) - p\left( {C \cap A} \right) + p\left( {A \cap B \cap C} \right) \cr
& = \frac{{3p}}{2} + {p^2} \cr
& = \frac{{3p + 2{p^2}}}{2}\,\,\,\,\,\left[ {{\text{Using equation }}\left( 4 \right)\,{\text{and}}\left( 5 \right)} \right] \cr} $$