For the reaction $$S{O_{2\left( g \right)}} + \frac{1}{2}{O_{2\left( g \right)}} \rightleftharpoons S{O_{3\left( g \right)}},$$ if $${K_p} = {K_c}{\left( {RT} \right)^x}$$ where the symbols have usual meaning then the value of $$x$$ is ( assuming ideality ) :
A.
$$- 1$$
B.
$$ - \frac{1}{2}$$
C.
$$\frac{1}{2}$$
D.
$$1$$
Answer :
$$ - \frac{1}{2}$$
Solution :
$$\eqalign{
& S{O_2}\left( g \right) + \frac{1}{2}{O_2}\left( g \right) \rightleftharpoons S{O_3}\left( g \right) \cr
& {K_p} = {K_C}{\left( {RT} \right)^x} \cr} $$
where $$x = \Delta {n_g} = $$ number of gaseous moles in product - number of gaseous moles in reactant
$$\eqalign{
& = 1 - \left( {1 + \frac{1}{2}} \right) \cr
& = 1 - \frac{3}{2} \cr
& = - \frac{1}{2} \cr} $$
Releted MCQ Question on Physical Chemistry >> Chemical Equilibrium
Releted Question 1
For the reaction : $${H_2}\left( g \right) + {I_2}\left( g \right) \rightleftharpoons 2HI\left( g \right)$$ the equilibrium constant $${K_p}$$ changes with