For the following reaction :
$$N{O_{\left( g \right)}} + {O_{3\left( g \right)}} \rightleftharpoons N{O_{2\left( g \right)}} + {O_{2\left( g \right)}}$$
The value of $${K_c}$$ is $$8.2 \times {10^4}.$$ What will be the value of $${K_c}$$ for the reverse reaction?
A.
$$8.2 \times {10^4}$$
B.
$$\frac{1}{{8.2 \times {{10}^4}}}$$
C.
$${\left( {8.2 \times {{10}^4}} \right)^2}$$
D.
$$\sqrt {8.2 \times {{10}^4}} $$
Answer :
$$\frac{1}{{8.2 \times {{10}^4}}}$$
Solution :
The value of $${K_c}$$ for the reverse reaction will be $$\frac{1}{{8.2 \times {{10}^4}}}.$$
Releted MCQ Question on Physical Chemistry >> Chemical Equilibrium
Releted Question 1
For the reaction : $${H_2}\left( g \right) + {I_2}\left( g \right) \rightleftharpoons 2HI\left( g \right)$$ the equilibrium constant $${K_p}$$ changes with