Question

For real numbers $$x$$ and $$y,$$ we define $$xRy$$  iff $$x - y + \sqrt 5 $$   is an irrational number. The relation $$R$$ is :

A. reflexive  
B. symmetric
C. transitive
D. none of these
Answer :   reflexive
Solution :
$$\eqalign{ & x\, \in \,R \Rightarrow x - x + \sqrt 5 = \sqrt 5 {\text{ is an irrational number}}{\text{.}} \cr & \therefore \,\left( {x,\,x} \right) \in \,R \cr & \therefore \,R{\text{ is reflexive}}{\text{.}} \cr & \left( {\sqrt 5 ,\,1} \right) \in \,R{\text{ because}} \cr & \sqrt 5 - 1 + \sqrt 5 = 2\sqrt 5 - 1{\text{ which is an irrational number}}{\text{.}} \cr & \therefore \,\left( {1,\,\sqrt 5 } \right) \notin \,R \cr & \therefore \,R{\text{ is not symmetric}}{\text{.}} \cr & {\text{We have, }}\left( {\sqrt 5 ,\,1} \right),\,\left( {1,\,2\sqrt 5 } \right) \in \,R{\text{ because}} \cr & \sqrt 5 - 1 + \sqrt 5 = 2\sqrt 5 - 1{\text{ if }}1 - 2\sqrt 5 + \sqrt 5 = 1 - \sqrt 5 \cr & {\text{are irrational number}}{\text{.}} \cr & {\text{Also, }}\left( {\sqrt 5 ,\,2\sqrt 5 } \right) \in \,R{\text{ and}} \cr & \sqrt 5 - 2\sqrt 5 + \sqrt 5 = 0\,{\text{which is not an irrational number}}{\text{.}} \cr & \therefore \,\left( {\sqrt 5 ,\,2\sqrt 5 } \right) \notin \,R \cr & \therefore \,R{\text{ is not transitive}}{\text{.}} \cr} $$

Releted MCQ Question on
Calculus >> Sets and Relations

Releted Question 1

If $$X$$ and $$Y$$ are two sets, then $$X \cap {\left( {X \cup Y} \right)^c}$$   equals.

A. $$X$$
B. $$Y$$
C. $$\phi $$
D. None of these
Releted Question 2

The expression $$\frac{{12}}{{3 + \sqrt 5 + 2\sqrt 2 }}$$    is equal to

A. $$1 - \sqrt 5 + \sqrt 2 + \sqrt {10} $$
B. $$1 + \sqrt 5 + \sqrt 2 - \sqrt {10} $$
C. $$1 + \sqrt 5 - \sqrt 2 + \sqrt {10} $$
D. $$1 - \sqrt 5 - \sqrt 2 + \sqrt {10} $$
Releted Question 3

If $${x_1},{x_2},.....,{x_n}$$    are any real numbers and $$n$$ is any positive integer, then

A. $$n\sum\limits_{i = 1}^n {{x_i}^2 < {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
B. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
C. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant n{{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
D. none of these
Releted Question 4

Let $$S$$ = {1, 2, 3, 4}. The total number of unordered pairs of disjoint subsets of $$S$$ is equal to

A. 25
B. 34
C. 42
D. 41

Practice More Releted MCQ Question on
Sets and Relations


Practice More MCQ Question on Maths Section