Question

For natural numbers $$m, n$$  if $${\left( {1 - y} \right)^m}{\left( {1 + y} \right)^n} = 1 + {a_1}y + {a_2}{y^2} + .....$$        and $${a_1} = {a_2} = 10,$$   then $$\left( {m,n} \right)$$  is

A. $$\left( {20,45} \right)$$
B. $$\left( {35,20} \right)$$
C. $$\left( {45,35} \right)$$
D. $$\left( {35,45} \right)$$  
Answer :   $$\left( {35,45} \right)$$
Solution :
$$\eqalign{ & {\left( {1 - y} \right)^m}{\left( {1 + y} \right)^n} \cr & = \left[ {1 - {\,^m}{C_1}y + {\,^y}{C_2}{y^2} - .....} \right]\left[ {1 + {\,^n}{C_1}y + {\,^n}{C_2}{y^2} + .....} \right] \cr & = 1 + \left( {n - m} \right)y + \left\{ {\frac{{m\left( {m - 1} \right)}}{2} + \frac{{n\left( {n - 1} \right)}}{2} - mn} \right\}{y^2} + ..... \cr} $$
By comparing coefficients with the given expression, we get
$$\eqalign{ & \therefore {a_1} = n - m = 10{\text{ and }}{a_2} = \frac{{{m^2} + {n^2} - m - n - 2mn}}{2} = 10 \cr & {\text{So, }}n - m = 10{\text{ and }}{\left( {m - n} \right)^2} - \left( {m + n} \right) = 20 \cr & \Rightarrow m + n = 80 \cr & \therefore m = 35,n = 45 \cr} $$

Releted MCQ Question on
Algebra >> Binomial Theorem

Releted Question 1

Given positive integers $$r > 1, n > 2$$   and that the co - efficient of $${\left( {3r} \right)^{th}}\,{\text{and }}{\left( {r + 2} \right)^{th}}$$    terms in the binomial expansion of $${\left( {1 + x} \right)^{2n}}$$  are equal. Then

A. $$n = 2r$$
B. $$n = 2r + 1$$
C. $$n = 3r$$
D. none of these
Releted Question 2

The co-efficient of $${x^4}$$ in $${\left( {\frac{x}{2} - \frac{3}{{{x^2}}}} \right)^{10}}$$   is

A. $$\frac{{405}}{{256}}$$
B. $$\frac{{504}}{{259}}$$
C. $$\frac{{450}}{{263}}$$
D. none of these
Releted Question 3

The expression $${\left( {x + {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5} + {\left( {x - {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5}$$       is a polynomial of degree

A. 5
B. 6
C. 7
D. 8
Releted Question 4

If in the expansion of $${\left( {1 + x} \right)^m}{\left( {1 - x} \right)^n},$$    the co-efficients of $$x$$ and $${x^2}$$ are $$3$$ and $$- 6\,$$ respectively, then $$m$$ is

A. 6
B. 9
C. 12
D. 24

Practice More Releted MCQ Question on
Binomial Theorem


Practice More MCQ Question on Maths Section