Question
For a given reaction, $$\Delta H = 35.5\,kJ\,mo{l^{ - 1}}$$ and $$\Delta S = 83.6\,J{K^{ - 1}}mo{l^{ - 1}}.$$ The reaction is spontaneous at : ( Assume that $$\Delta H$$ ans $$\Delta S$$ do not vary with temperature )
A.
$$T < 425\,K$$
B.
$$T > 425\,K$$
C.
$${\text{all ternperatures}}$$
D.
$$T > 298K$$
Answer :
$$T > 425\,K$$
Solution :
According to Gibbs-Helmholtz equation,
Gibbs energy $$\left( {\Delta G} \right) = \Delta H - T\Delta S$$
Where, $$\Delta H$$ = Enthalpy change
$$\Delta S$$ = Entropy change
$$T$$ = Temperature
For a reaction to be spontaneous
$$\Delta G < 0.$$
∴ Gibbs -Helmholtz equation becomes,
$$\eqalign{
& \Delta G = \Delta H - T\Delta S < 0 \cr
& {\text{or,}}\,\Delta H < T\Delta S \cr
& {\text{or}},\,\,T > \frac{{\Delta H}}{{\Delta S}} \cr
& = \frac{{35.5\,kJ\,mo{l^{ - 1}}}}{{83.6\,J{K^{ - 1}}mo{l^{ - 1}}}} \cr
& = \frac{{35.5 \times 1000}}{{83.6}} \cr
& = 425K \cr
& T > 425K \cr} $$