For a first order reaction, $$A \to B,$$ the reaction rate at reactant concentration of $$0.01\,M$$ is found to be $$2.0 \times {10^{ - 5}}mol\,{L^{ - 1}}{s^{ - 1}}.$$ The half-life period of the reaction is
A.
220$$\,s$$
B.
30$$\,s$$
C.
300$$\,s$$
D.
347$$\,s$$
Answer :
347$$\,s$$
Solution :
$$\eqalign{
& {\text{For first order reaction,}} \cr
& A \to B \cr
& {\text{rate}} = k \times \left[ A \right] \cr
& {\text{Rate}} = 2.0 \times {10^{ - 5}}mol\,{L^{ - 1}}{s^{ - 1}} \cr
& \left[ A \right] = 0.01\,M \cr
& {\text{So,}}\,\,{\text{2}}{\text{.0}} \times {\text{1}}{{\text{0}}^{ - 5}} = k \times 0.01 \cr
& k = \frac{{2.0 \times {{10}^{ - 5}}}}{{0.01}}\,{s^{ - 1}} \cr
& = 2.0 \times {10^{ - 3}}{s^{ - 1}} \cr
& {\text{For first order reaction,}} \cr
& {t_{\frac{1}{2}}} = \frac{{0.693}}{k} = \frac{{0.693}}{{2.0 \times {{10}^{ - 3}}}} \cr
& = 346.5 \approx 347\,s \cr} $$
Releted MCQ Question on Physical Chemistry >> Chemical Kinetics
Releted Question 1
If uranium (mass number 238 and atomic number 92) emits an $$\alpha $$ -particle, the product has mass no. and atomic no.