Question

Find the minimum value of the function $$\frac{{40}}{{3{x^4} + 8{x^3} - 18{x^2} + 60}}$$

A. $$\frac{1}{3}$$
B. $$\frac{2}{3}$$  
C. $$\frac{4}{3}$$
D. $$\frac{5}{3}$$
Answer :   $$\frac{2}{3}$$
Solution :
$$\eqalign{ & {\text{Let }}y = \frac{1}{{40}}\left( {3{x^4} + 8{x^3} - 18{x^2} + 60} \right) \cr & \Rightarrow \frac{{dy}}{{dx}} = \frac{1}{{40}}\left( {12{x^3} + 24{x^2} - 36x} \right) \cr & {\text{and }}\frac{{{d^2}y}}{{d{x^2}}} = \frac{1}{{40}}\left( {36{x^2} + 48x - 36} \right) \cr & {\text{Now, }}\frac{{dy}}{{dx}} = 0 \Rightarrow {x^3} + 2{x^2} - 3x = 0 \cr & {\text{or }}x\left( {x - 1} \right)\left( {x + 3} \right) = 0 \cr & {\text{or}}\,\,x = 0,\,1,\, - 3 \cr & {\text{At }}x = 0,\,\frac{{{d^2}y}}{{d{x^2}}} = - 36 < 0 \cr & \therefore y{\text{ is maximum at }}x = 0 \cr & \Rightarrow {\text{The given function i}}{\text{.e}}{\text{., }}\frac{1}{y}{\text{ is minimum at }}x = 0 \cr & \therefore {\text{minimum value of the function}} = \frac{{40}}{{60}} = \frac{2}{3} \cr} $$

Releted MCQ Question on
Calculus >> Application of Derivatives

Releted Question 1

If  $$a + b + c = 0,$$    then the quadratic equation $$3a{x^2}+ 2bx + c = 0$$     has

A. at least one root in $$\left[ {0, 1} \right]$$
B. one root in $$\left[ {2, 3} \right]$$  and the other in $$\left[ { - 2, - 1} \right]$$
C. imaginary roots
D. none of these
Releted Question 2

$$AB$$  is a diameter of a circle and $$C$$ is any point on the circumference of the circle. Then

A. the area of $$\Delta ABC$$  is maximum when it is isosceles
B. the area of $$\Delta ABC$$  is minimum when it is isosceles
C. the perimeter of $$\Delta ABC$$  is minimum when it is isosceles
D. none of these
Releted Question 3

The normal to the curve $$x = a\left( {\cos \theta + \theta \sin \theta } \right),y = a\left( {\sin \theta - \theta \cos \theta } \right)$$        at any point $$'\theta '$$ is such that

A. it makes a constant angle with the $$x - $$axis
B. it passes through the origin
C. it is at a constant distance from the origin
D. none of these
Releted Question 4

If $$y = a\ln x + b{x^2} + x$$     has its extremum values at $$x = - 1$$  and $$x = 2,$$  then

A. $$a = 2,b = - 1$$
B. $$a = 2,b = - \frac{1}{2}$$
C. $$a = - 2,b = \frac{1}{2}$$
D. none of these

Practice More Releted MCQ Question on
Application of Derivatives


Practice More MCQ Question on Maths Section