Question

Find the greatest value of the function $$f\left( x \right) = \frac{{\sin \,2x}}{{\sin \left( {x + \frac{\pi }{4}} \right)}}$$       on the interval $$\left[ {0,\,\frac{\pi }{2}} \right]$$

A. 1  
B. 2
C. 3
D. none of these
Answer :   1
Solution :
Let $$f\left( x \right) = \frac{{\sin \,2x}}{{\sin \left( {x + \frac{\pi }{4}} \right)}} = \sqrt 2 \left\{ {\frac{{{{\left( {\sin \,x + \cos \,x} \right)}^2} - 1}}{{\sin \,x + \cos \,x}}} \right\} = \sqrt 2 \left( {\frac{{{y^2} - 1}}{y}} \right),$$              where $$y = \sin \,x + \cos \,x$$
Let $$\phi \left( y \right) = \sqrt 2 \left( {\frac{{{y^2} - 1}}{y}} \right){\text{ and }}g\left( x \right) = \sin \,x + \cos \,x$$
We have, $$g'\left( x \right) = \cos \,x - \sin \,x$$
For max. or min. $$g'\left( x \right) = 0 \Rightarrow \tan \,x = 1 \Rightarrow x = \frac{\pi }{4}$$
For this value of $$x.$$
$$g''\left( x \right) < 0.$$   Thus, $$g\left( x \right)$$  is max. at $$x = \frac{\pi }{4}$$  and hence the domain of $$g\left( x \right)$$  is $$\left[ {1,\,\sqrt 2 } \right]$$  i.e. $$y$$ lies between $$1$$ and $$\sqrt 2 $$
Now, $$\phi '\left( y \right) = \sqrt 2 \left( {1 + \frac{1}{{{y^2}}}} \right) > 0{\text{ for all }}y\, \in \left[ {1,\,\sqrt 2 } \right]$$
That is $$\phi \left( y \right)$$  is increasing for all $$y\, \in \left[ {1,\,\sqrt 2 } \right]$$
Thus it attains the greatest value at $$\sqrt 2 $$ and is equal to $$\sqrt 2 \left( {\frac{{{{\left( {\sqrt 2 } \right)}^2} - 1}}{{\sqrt 2 }}} \right) = 1$$
Hence, greatest value of $$f\left( x \right)$$  on $$\left[ {0,\,\frac{\pi }{2}} \right] = $$   greatest value of $$\phi \left( y \right)\,{\text{on}}\,\left[ {1,\,\sqrt 2 } \right] = 1.$$

Releted MCQ Question on
Calculus >> Application of Derivatives

Releted Question 1

If  $$a + b + c = 0,$$    then the quadratic equation $$3a{x^2}+ 2bx + c = 0$$     has

A. at least one root in $$\left[ {0, 1} \right]$$
B. one root in $$\left[ {2, 3} \right]$$  and the other in $$\left[ { - 2, - 1} \right]$$
C. imaginary roots
D. none of these
Releted Question 2

$$AB$$  is a diameter of a circle and $$C$$ is any point on the circumference of the circle. Then

A. the area of $$\Delta ABC$$  is maximum when it is isosceles
B. the area of $$\Delta ABC$$  is minimum when it is isosceles
C. the perimeter of $$\Delta ABC$$  is minimum when it is isosceles
D. none of these
Releted Question 3

The normal to the curve $$x = a\left( {\cos \theta + \theta \sin \theta } \right),y = a\left( {\sin \theta - \theta \cos \theta } \right)$$        at any point $$'\theta '$$ is such that

A. it makes a constant angle with the $$x - $$axis
B. it passes through the origin
C. it is at a constant distance from the origin
D. none of these
Releted Question 4

If $$y = a\ln x + b{x^2} + x$$     has its extremum values at $$x = - 1$$  and $$x = 2,$$  then

A. $$a = 2,b = - 1$$
B. $$a = 2,b = - \frac{1}{2}$$
C. $$a = - 2,b = \frac{1}{2}$$
D. none of these

Practice More Releted MCQ Question on
Application of Derivatives


Practice More MCQ Question on Maths Section