Question
Given $$f\left( x \right) = b\left( {{{\left[ x \right]}^2} + \left[ x \right]} \right) + 1$$ for $$x \geqslant - 1 = \sin \left( {\pi \left( {x + a} \right)} \right)$$ for $$x < - 1$$ where $$\left[ x \right]$$ denotes the integral part of $$x,$$ then for what values of $$a,\,b$$ the function is continuous at $$x = - 1\,?$$
A.
$$a = 2n + \left( {\frac{3}{2}} \right);\,b\, \in \,R;\,n\, \in \,I$$
B.
$$a = 4n + 2;\,b\, \in \,R;\,n\, \in \,I$$
C.
$$a = 4n + \left( {\frac{3}{2}} \right);\,b\, \in \,{R^{ + 1}};\,n\, \in \,I$$
D.
$$a = 4n + 1;\,b\, \in \,{R^ + };\,n\, \in \,I$$
Answer :
$$a = 2n + \left( {\frac{3}{2}} \right);\,b\, \in \,R;\,n\, \in \,I$$
Solution :
$$\eqalign{
& f\left( { - 1} \right) = b\left( {1 - 1} \right) + 1 = 1; \cr
& \mathop {\lim }\limits_{h \to 0} f\left( { - 1 + h} \right) = 1 \cr
& \mathop {\lim }\limits_{h \to 0} f\left( { - 1 - h} \right) = \mathop {\lim }\limits_{h \to 0} \sin \left( {\pi \left( { - 1 - h} \right) + \pi a} \right) \cr
& = \sin \left( { - \pi + \pi a} \right) \cr
& = - \sin \,\pi a \cr
& {\text{For continuous }}\sin \,\pi a = - 1 = \sin \left( {2n\pi + \frac{{3\pi }}{2}} \right) \cr
& \Rightarrow \pi a = 2n\pi + \frac{{3\pi }}{2} \cr
& \Rightarrow a = 2n + \frac{3}{2} \cr
& {\text{Hence, }}a = 2n + \frac{3}{2},\,n\, \in \,I{\text{ and }}b\, \in \,R \cr} $$