Question

Given $$f\left( x \right) = b\left( {{{\left[ x \right]}^2} + \left[ x \right]} \right) + 1$$     for $$x \geqslant - 1 = \sin \left( {\pi \left( {x + a} \right)} \right)$$     for $$x < - 1$$   where $$\left[ x \right]$$ denotes the integral part of $$x,$$ then for what values of $$a,\,b$$  the function is continuous at $$x = - 1\,?$$

A. $$a = 2n + \left( {\frac{3}{2}} \right);\,b\, \in \,R;\,n\, \in \,I$$  
B. $$a = 4n + 2;\,b\, \in \,R;\,n\, \in \,I$$
C. $$a = 4n + \left( {\frac{3}{2}} \right);\,b\, \in \,{R^{ + 1}};\,n\, \in \,I$$
D. $$a = 4n + 1;\,b\, \in \,{R^ + };\,n\, \in \,I$$
Answer :   $$a = 2n + \left( {\frac{3}{2}} \right);\,b\, \in \,R;\,n\, \in \,I$$
Solution :
$$\eqalign{ & f\left( { - 1} \right) = b\left( {1 - 1} \right) + 1 = 1; \cr & \mathop {\lim }\limits_{h \to 0} f\left( { - 1 + h} \right) = 1 \cr & \mathop {\lim }\limits_{h \to 0} f\left( { - 1 - h} \right) = \mathop {\lim }\limits_{h \to 0} \sin \left( {\pi \left( { - 1 - h} \right) + \pi a} \right) \cr & = \sin \left( { - \pi + \pi a} \right) \cr & = - \sin \,\pi a \cr & {\text{For continuous }}\sin \,\pi a = - 1 = \sin \left( {2n\pi + \frac{{3\pi }}{2}} \right) \cr & \Rightarrow \pi a = 2n\pi + \frac{{3\pi }}{2} \cr & \Rightarrow a = 2n + \frac{3}{2} \cr & {\text{Hence, }}a = 2n + \frac{3}{2},\,n\, \in \,I{\text{ and }}b\, \in \,R \cr} $$

Releted MCQ Question on
Calculus >> Continuity

Releted Question 1

For a real number $$y,$$ let $$\left[ y \right]$$ denotes the greatest integer less than or equal to $$y:$$ Then the function $$f\left( x \right) = \frac{{\tan \left( {\pi \left[ {x - \pi } \right]} \right)}}{{1 + {{\left[ x \right]}^2}}}$$     is-

A. discontinuous at some $$x$$
B. continuous at all $$x,$$ but the derivative $$f'\left( x \right)$$  does not exist for some $$x$$
C. $$f'\left( x \right)$$  exists for all $$x,$$ but the second derivative $$f'\left( x \right)$$  does not exist for some $$x$$
D. $$f'\left( x \right)$$  exists for all $$x$$
Releted Question 2

The function $$f\left( x \right) = \frac{{\ln \left( {1 + ax} \right) - \ln \left( {1 - bx} \right)}}{x}$$       is not defined at $$x = 0.$$  The value which should be assigned to $$f$$ at $$x = 0,$$  so that it is continuous at $$x =0,$$  is-

A. $$a-b$$
B. $$a+b$$
C. $$\ln a - \ln b$$
D. none of these
Releted Question 3

The function $$f\left( x \right) = \left[ x \right]\cos \left( {\frac{{2x - 1}}{2}} \right)\pi ,\,\left[ . \right]$$      denotes the greatest integer function, is discontinuous at-

A. all $$x$$
B. All integer points
C. No $$x$$
D. $$x$$ which is not an integer
Releted Question 4

The function $$f\left( x \right) = {\left[ x \right]^2} - \left[ {{x^2}} \right]$$    (where $$\left[ y \right]$$ is the greatest integer less than or equal to $$y$$ ), is discontinuous at-

A. all integers
B. all integers except 0 and 1
C. all integers except 0
D. all integers except 1

Practice More Releted MCQ Question on
Continuity


Practice More MCQ Question on Maths Section