Question

$$f$$ is defined in $$\left[ { - 5,\,5} \right]$$  as $$f\left( x \right) = x$$   if $$x$$ is rational $$ = - x$$   if $$x$$ is irrational. Then-

A. $$f\left( x \right)$$  is continuous at every $$x,$$ except $$x =0$$
B. $$f\left( x \right)$$  is discontinuous at every $$x,$$ except $$x =0$$  
C. $$f\left( x \right)$$  is continuous everywhere
D. $$f\left( x \right)$$  is discontinuous everywhere
Answer :   $$f\left( x \right)$$  is discontinuous at every $$x,$$ except $$x =0$$
Solution :
Let $$a$$ is a rational number other than 0, in $$\left[ { - 5,\,5} \right],$$  then
$$f\left( a \right) = a\,\,\,{\text{and}}\,\,\,\,\mathop {\lim }\limits_{x \to a} f\left( x \right) = - a$$
[As in the immediate neighborhood of a rational number, we find irrational numbers]
$$\therefore f\left( x \right)$$  is not continuous at any rational number
If $$a$$ is irrational number, then
$$f\left( a \right) = - a\,\,\,{\text{and}}\,\,\,\,\mathop {\lim }\limits_{x \to a} f\left( x \right) = a$$
$$\therefore f\left( x \right)$$  is not continuous at any irrational number clearly
$$\mathop {\lim }\limits_{x \to 0} f\left( x \right) = f\left( 0 \right) = 0$$
$$\therefore f\left( x \right)$$  is continuous at $$x =0$$

Releted MCQ Question on
Calculus >> Continuity

Releted Question 1

For a real number $$y,$$ let $$\left[ y \right]$$ denotes the greatest integer less than or equal to $$y:$$ Then the function $$f\left( x \right) = \frac{{\tan \left( {\pi \left[ {x - \pi } \right]} \right)}}{{1 + {{\left[ x \right]}^2}}}$$     is-

A. discontinuous at some $$x$$
B. continuous at all $$x,$$ but the derivative $$f'\left( x \right)$$  does not exist for some $$x$$
C. $$f'\left( x \right)$$  exists for all $$x,$$ but the second derivative $$f'\left( x \right)$$  does not exist for some $$x$$
D. $$f'\left( x \right)$$  exists for all $$x$$
Releted Question 2

The function $$f\left( x \right) = \frac{{\ln \left( {1 + ax} \right) - \ln \left( {1 - bx} \right)}}{x}$$       is not defined at $$x = 0.$$  The value which should be assigned to $$f$$ at $$x = 0,$$  so that it is continuous at $$x =0,$$  is-

A. $$a-b$$
B. $$a+b$$
C. $$\ln a - \ln b$$
D. none of these
Releted Question 3

The function $$f\left( x \right) = \left[ x \right]\cos \left( {\frac{{2x - 1}}{2}} \right)\pi ,\,\left[ . \right]$$      denotes the greatest integer function, is discontinuous at-

A. all $$x$$
B. All integer points
C. No $$x$$
D. $$x$$ which is not an integer
Releted Question 4

The function $$f\left( x \right) = {\left[ x \right]^2} - \left[ {{x^2}} \right]$$    (where $$\left[ y \right]$$ is the greatest integer less than or equal to $$y$$ ), is discontinuous at-

A. all integers
B. all integers except 0 and 1
C. all integers except 0
D. all integers except 1

Practice More Releted MCQ Question on
Continuity


Practice More MCQ Question on Maths Section